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Abstract : Two families of sixth-order methods are developed by extending a third-order HN method ( har-
monic mean Newton’ s method) for finding the real roots of nonlinear equation in R. The convergence anal-
ysis is provided to establish their sixth-order of convergence. In terms of computational cost,they require e-
valuations of only two functions and two first derivatives per iteration. This implies that efficiency index of
our methods are 1.565. Our methods are comparable with Newton’ s method , HN method and others, as we
show in some examples. In the end,some improvements of AN method ( arithmetic mean Newton’ s method)
were given.

Key words:sixth-order convergence;non linear equation ; HN method ;iterative method

CLC number.0241.7 Document code: A

RATABr gy HN Jj ik —2eife )™

M, ®EH#, EE', fEE

(LAMBIL¥R KFELSEEMAER, TH XM 450002,
2.EMEEMTEAFE, L% EMN 234000)

RE RS ZHRAEHEHA(HN 5%), 28 T2 A RKEEARBERR TR A
B A SRACHAED. £ i R, A XA BT E 2 AR 2 A FRAE, MR HHA
1.565. A X H k5 4 Mk HN 7k A ROl F BT, S RAN T AL F ke oAt &
BT AN 5k (REFH 4T H ) 4.

SR A B 3 R A A R A R R R

portant problems in numerical analysis. In this paper,

0 Introduction

we consider iterative methods to find a simple root of a

Solving nonlinear equation is one of the most im- nonlinear equation f(x) =0,where £ DCR—R for an
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open interval D is a scalar function.

The classical Newton’ s method for a single non-
linear equation is written as

flx)
"TF(x)

This is an important and basic method'" | which con-

Xpsp T %

verges quadratically.

Some modifications of Newton’ s method with cu-
bic convergence have been developed in[2 ~7]. The
Jarratt method!®’ is fourth-order convergence. Re-
cently, improvements of Chebyshev-Halley methods
with fifth-order convergence is developed in[ 9], vari-
ants of Chebyshev-Halley methods is developed in
[10], improvements of the Jarratt method with sixth-
order convergence have been developed by Kou Jisheng
in[11] ,by Wang Xiuhua et al in[12] and by Chang-
bum Chun in[13] separately, which improve the local
order of convergence of Jarratt method by an additional

evaluation of the function!™!

. is a sixth-order method,
which improves arithmetic mean Newton’ s method
( AN method) in[7].
HN method is a third-order method of A. Y. Ozban
in[2],which is
Ax,)
Yo = %, — f(z,)
Aa,) (f(x,) +F(y.))

2f (%,)f (32)
In this paper,we improve HN method from third-

xll'fl = xll -

order to sixth-order and only add one first derivative
per iteration. In terms of computational cost,it requires
the evaluations of only two functions and two first deriv-
atives per iteration. This gives 1. 565 as an efficiency
index of our methods. Our methods are comparable with
Newton’ s method and other methods. The efficacy of
the methods is tested on a number of numerical exam-
ples. It is observed that our methods take less number
of iterations than taken by Newton’ s method and other
methods. On comparison with the other sixth-order
methods, they behave either similarly or better for the
examples considered. In section 4, we give improvement
of AN method,we can see that S. K. Parhi and D. K.
Gupta’ s method in[ 14] is a special case of our im-

provement.

1 The methods and analysis of con-
vergence

Applying method of undetermined cofficient, we
consider the following iteration scheme

o flm)
N IPS)
I CATU{ER T {CAD I
n S 2 ()1 (1)

ey - S (f(5) +b(y.))
LT (%) +df () (5,) + o7 (5,)
where a,b,c,d,e € R are constants.
Theorem 1  Assume that function fe C* (D) has
a simple zero € D. If the initial point x, is sufficiently

x

close to a,then the methods defined by (D converge to

oy .. 1
a with sixth-order under the conditions ¢ = - ?( a+

b),d=(2a +b) ,e=;—(b—a).

Proof Considering iteration function of Q)

f(2) (af (%) +bf (¥))

F =z -
%) =250 +df () () + ()
e ) D) ()
Where y =2 = 22y’ IO
Then (D becomes
xrul = F(xn)

We expand F(x,) about a,let e, =%, — a and

F? =f9(a) ,then we have

F(x,) = F(a) + F'(a)e, + F"2(’a)ci + F”;(’a)ei +

(6)
s () e, ooy

FOa) o, F(a) s
41 st 6!
Cosidering f(a) =0, after computing we get
F(a) = a F'(a) =0 F'(a) =0
(-a-b+c+d+e)f”
2(c+d +e)f

Under the condition —a - b +¢c +d +e =0,

F"(a) =

there are
c=a+b-d-e F'(a) =0
F(4)(a) = 2(“ +2b-d -zze)fff”
(a +b)f
Under the condition a +2b —d —-2e =0, there are
d=2+2b~-2 F%¥(a) =0
5(a - b +2e) /"
F(S) =
(@) == v

Under the condition a - b +2e =0, there are

e = %(b —a) F%(a) =0
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F®(a) = 5ff"(12af” —5(a +b)ff")
2(a +b)f*

It is clear that F® (@) 0, then the error equa-
tion of D is thus

_frr(12 af” -5(a + b)) o
Enn 288(a + b)f" s+ 0(e)

After simplifying,we have ¢ = - %(a +b),d=

(b -a).Now it is clear that formula

(2a +b) ,e =%

(D converges tricubically under the conditions of theo-
rem. We substitute ¢,d, e into formula @ and simplify,

then we obtain a new family of sixth-order methods as

follows ;
y’l n fY(xn)
R _f(x) (%) +(5.)) ®
o 27 (%) (3.)
Xpet = 2, —
2(z,) (af (x,) +bf (1))
- (e +b)f*(x,) +2(20 +b)f (%,)f (,) + (b-0)f*(y,)

where a,b e R are constants and ¢ + b#0. Formula %)
converges tricubically.
More generally,we can obtain another new family
sixth-order methods as follows;
f(x,)
Cf(x)
) (F(x) +£(32)
2f (x)f (5.)
f(z,)
T (af () +57(3.))
)
f(x)

sents a real-valued function. Modeled on the proof of

y’l =xll

®

Xne1 = 2,

H(w,)

where a,b are constants,u, = and H(t) repre-

Theorem 1,we can get the following conclusion.

Theorem 2  Assume that function f,H e C*(D)
has a simple zero a € D. If the initial point x, is suffi-
ciently close to @ then the methods defined by &) con-
verge to a with fourth-order under the conditions
H(1) =a+b,H' (1) = —a,H"(1) =3a+band a +b
#0. The error equation of 3 is

€nsi

L(=5(a + )" +4(/) (150 + 6b + H"(1)) ¢
288(a + b)f*

0(el)

In what follows, we give some concrete iterative forms

of ®.
Method 1 For the function H(t) defined by
H(1) = 7"2;3” - (4a +b)t +§%—bz2 @

It can easily be seen that the function H(t) of @
satisfies conditions of Theorem 2. Hence we get a new

two-parameter fourth-order family of methods

_, _fx)
R
_, &) (F(5) +£(0)
ST PRVICD!
N (€A

(of (x,) + 5 (5,))
(7a +3b)f*(x,) -2(4a + b)f (x, )f'(yn)
21*(x,)
(3a +b)f*(y,)
2% (x,) ®
Method 2 For the function H(t) defined by
_(=d* +2ab + ) — (d® +4ab + B )t
H(t) = a+b-(3a+b) ©
It can easily be seen that the function H(t) of ®

satisfies conditions of Theorem 2. Hence we get a new

two-parameter fourth-order family of methods

_ fx)
Yo =5 TP (x)
A CAYU(CART(CA) @
n T 2 (x) (3,)
= £(z,)

" (af (x) + 6 ()
(-d® +2ab +b*)f(x,) - (a® +4ab + b*)f (y,)
(a +b)f(x,) - (3a +b)f(y,)
Method 3  For the function H(t) defined by

H(t) = %(—2+13a+7b +6t -

3(2 +5a + ) +2(1 +4a +b)1%)
It can easily be seen that the function H(t) of
satisfies conditions of Theorem 2. Hence we get a new

two-parameter fourth-order family of methods

_fm)
Yo = %, -fy(xn)
B CATCRET (CA RN
o 21 (x)f (r.)

- (f'(yn)) f(z,)
i = f(x,)/(af (x,) +bf(y,))
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Where

H(f'(yu)
f ()

f(.)
£ (%)

)=%(—2+13a+7b +6

3(2 +5a + 1;)(%%)2 +
x’l

2(1 +4a +b) (f;(y—"))s)
S (%)
Method 4 Letting a =1,b =0 in ®, for the
function H(t) defined by
H(t) =

(0 +58 - 2y) +at + B¢ ®
(—a-28+7y) + Ba +88 —4y)t +y*
It can easily be seen that the function H(t) of 0

satisfies conditions of Theorem 2. Hence we get a new
two-parameter fourth-order family of methods.
f(%,)
Yo = E 500
fx) (5 £ ()
2f (x,)f (3.)
Az,) )
f(x,)
(a+58-29)f"(x,) +of (5.)f () +8*(3.)
(-a=-28+9)f*(x,) + (Ga +88-47)f (x,)f (1.) +¥*(5,)
where a,8,y are constants and a +38 -y #0.

n n

@

Xo1 = %, _(

In terms of computational cost, it requires evalua-
tions of only two functions and two first derivatives per

iteration. We consider the definition of efficiency index

[15] as p’z,where p is the order of the method and w
is the number of function evaluations per iteration re-
quired by the method. If we assume that all the evalua-
tions have the same cost as function one,we have that

the present methods have the efficiency indexes which

equal to 6% =1.565 ,which are better than the ones of
37 =1.442 in[2-7],5* =1.495 in[9] and New-

1
ton’ s method 27 =1.414,

2 Numerical results and conclusions

In this section,we present the results of some nu-
merical tests to compare the efficiency of the methods.
We employed CN method in [ 1], HN method in[2],
KMin[11],CMI (@ =1)and CM2 (a = ~1) in
[13],VSHM(a =1,y =1) method in [10] and new
methods N1 (a=1,b=11in ®),N2(a=1,b= -3 in
®),N3(e=1,b=-3inD),Nd (a=1,b= -3 in
®),N5 (=0,8=1,y=0in @).

Numerical computations reported here have been
carried out in a Mathematica 4. 0 environment. The sto-
‘f( %ypr) |+
|x,,, —al <10 ™. We can see the computing results
in Table 1.

The test functions of f(x) are as follows;

ping criterion has been taken as

fi(x) = [[(x- (1 +0.1m)) a=1

fi(x) =x° +45* - 10
a = 1. 365 230 013 414 097
(%) = cos(x) —x
a = 0.739 085 133 215 160 67
fi(x) =sin’(x) -2% +1
a =~ 1. 404 491 648 215 341
fs(x) — ezz+7z—30 -1
fo(x) = x. € - sin’x + 3cosx +5
a =~ - 1.207 647 827 130 919

a=3

Table 1 Comparison of various six-order methods, HN method and Newton’s method

NOFE

flx) "o NM HN KM CM1 CcM2 VSHM N1 N2 N3 N4 N5

fi(x) -0.5 32 27 NC NC 27 20 24 24 24 24 24

0 28 24 32 NC 32 20 20 20 20 20 20

£ (%) -0.5 30 126 NC 28 NC NC 76 76 76 16 40
2.0 10 9 8 8 8 8 8 8 8 8 8

f(®) -0.9 14 108 36 44 12 NC 20 20 20 16 28
1.0 8 9 8 8 8 8

fa(x) 2.0 10 9 8 8 8 8 8 8 8 8 8

fs(%) 3.5 24 21 20 20 20 20 16 16 16 16 20
4.0 39 33 20 20 20 NC 24 24 24 24 28

fo(x) 1.0 14 15 NC NC NC NC 12 12 12 12 12
-2.0 16 15 12 12 12 NC 12 12 12 12 12
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In Table 1,f(x) expresses test function, x, ex-
presses original iteration value, NOFE expresses the
number of function evaluations. NC in Table 1 implies
that the method does not converge. Here CN method is
second-order, HN method is third-order, the other
methods are sixth-order. The results show that the pro-
posed methods have some more advantages than the
others. The KM, CM1,CM2 and VSHM methods have
sensitivities to the original iteration value and they
don’ t converge (NC) to the zero for some test func-
tion. The new methods have iteration stabilities to origi-
nal iteration value and behave better than the others in

most situations.

3 Improvements of AN method

Applying the methods in this paper,we can obtain

improvements of AN method as follows, it is

_, )
Yo =5 (%)
o 2f(s,)
B Y v () ®@
xn+l =Z"—

Hlz)(af (5,) +bf (5,))
- (a+0)f*(5,) +2{2a +0)f (£,)f (5.} + (b - a)f*(7,)

where a,b € R are constants and a + b50. Formula @

converges tricubically,the error equation is

€nyt =

LG +£f)(3(-3a +b)f? +5(a + b)fP") |
288(ae + b)f"

e +0(e)

When a =1,b =1,formula @ becomes

fa)
" (=)

2f(x,)

VPR ET N ®
G 4+ f () £
"= f (%) +3f(y,) f (%)
@3 is S. K. Parhi and D. K. Gupta’s method in[ 14]. It
is clear that S. K. Parhi and D. K. Gupta’ s method in
[14] is special case of formula @.

ll=x

z, =%

X4 = z
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