文章编号: 2095 - 476X(2013) 06 - 0102 - 03

## 离散时滞异结构混沌系统的广义投影同步

## 毛北行 , 李亮

(郑州航空工业管理学院 数理系,河南 郑州 450015)

摘要:针对离散时滞异结构混沌系统广义投影同步问题,基于 Lyapunov 稳定性理论,得到了在选取 适当控制律的情况下,离散时滞异结构系统是投影同步的结论,并通过数值算例证明了该方法的有 效性.

关键词: 广义投影同步; 离散时滞异结构; 混沌系统; Lyapunov 稳定性理论

中图分类号: 0545 文献标志码: A DOI: 10. 3969 / j. issn. 2095 - 476X. 2013. 06. 024

# Generalized projective synchronization of discrete time-delayed different structure chaotic systems

#### MAO Bei-xing , LI Liang

(Department of Mathematics and Physics Zhengzhou Institute of Aeronautical Industry Management Zhengzhou 450015 , China )

**Abstract**: Aiming at the problem of generalized projective synchronization of discrete time-delayed different structure chaotic systems ,based on Lyapunov stability theory ,the conclusion was obtained that discrete time-delayed different structure chaotic systems were projective synchronization under the case selection of appropriate control law. Numerical simulation examples of chaotic system verified the effectiveness of the propsed method.

**Key words**: generalized projective synchronization; discrete time-delayed different structure; chaotic systems; Lyapunov stability theory

### 0 引言

自 Pecora 和 Carroll 于 1990 年代提出混沌系统 完全同步的方法以来,混沌同步研究取得了巨大的 进展,例如:完全同步、相同步、耦合同步、滞后同 步、广义同步、投影同步等<sup>[1-6]</sup>.1999 年,R. Mainieri 等<sup>[7]</sup>通过对耦合部分线性系统的研究指出,耦合的 主从系统状态下的输出不仅相位是锁定的,而且各 对应状态的振幅还按某一比例关系演化,这类混沌

#### 同步现象称为投影同步.

另一方面,虽然人们对混沌系统做了大量研究,但大多数工作仅考虑了相同结构的混沌同步, 异结构混沌系统的同步还没有被引起足够的关注. 混沌系统敏感地依赖初值条件,对于异结构混沌系统,初值条件任何微小的变化都可能引起系统之间 动态行为的巨大差异.所以,对异结构混沌系统的 研究具有更强的实用性.文献[8-9]研究了异结构 混沌系统的广义投影同步问题,但其结果都基于对

#### 收稿日期: 2013-10-23

基金项目:国家自然科学基金项目(51072184);国家自然科学基金数学天元基金项目(11226337);郑州航空工业管理学 院青年基金项目(2012113004)

作者简介: 毛北行(1976—), 男, 河南省洛阳市人, 郑州航空工业管理学院副教授, 硕士, 主要研究方向为切换系统与混沌同步.

h(

连续时间系统的讨论 离散时间系统的异结构混沌 系统的同步研究报道目前还比较少见. 鉴于此,本 文拟针对离散时滞异结构混沌系统广义投影同步 问题 基于 Lyapunov 稳定性理论,给出控制律的设 计方案,并用数值例子表明该方案的有效性.

#### 离散异结构混沌系统的投影同步 1

考虑如下离散混沌系统:

 $\int \boldsymbol{x}(k+1) = \boldsymbol{f}(x(k))$  $\int \mathbf{y}(k+1) = \mathbf{g}(\gamma(k)) + \mathbf{u}(k)$ 

其中 x(k) y(k) 分别代表主、从系统; u(k) 为待设 计的控制器. 如果存在一个常数  $\alpha$ ( $\alpha \neq 0$ ),且满足  $\lim \|x(k) - \alpha y(k)\| = 0$ 则称系统达到了广义投影 同步  $\alpha$  为比例因子.

假定驱动系统为

$$\begin{aligned} \mathbf{x}(k+1) &= \mathbf{f}(x(k)) &= \\ \mathbf{A}x(k) &+ \left[\mathbf{f}(x(k)) - \mathbf{A}x(k)\right] &= \\ \mathbf{A}x(k) &+ \mathbf{h}(x(k)) \end{aligned}$$

设计响应系统如下:

$$y(k + 1) = g(y(k)) =$$
  

$$By(k) + [g(y(k)) - By(k)] + u(k) =$$
  

$$By(k) + s(y(k)) + u(k)$$
(2)

若满足 $\lambda_{\max}$  [(A - K)<sup>T</sup>(A - K)] < 1, 定理1 在控制器

$$\boldsymbol{u}(k) = \alpha^{-1}\boldsymbol{h}(x(k)) + (\alpha^{-1}\boldsymbol{A}\alpha - \boldsymbol{B})y(k) + \alpha^{-1}\boldsymbol{K}(x(k) - \alpha\boldsymbol{y}(k)) - \boldsymbol{s}(y(k))$$
(3)

的作用下 系统 ① 与 ② 是广义投影同步的.

定义误差  $e(k) = x(k) - \alpha y(k)$ ,设计 证明 控制器为③则

$$e(k + 1) = x(k + 1) - \alpha y(k + 1) = Ax(k) + h(x(k)) - \alpha(By(k)) + s(y(k)) + u(k)) = Ax(k) + h(x(k)) - \alpha(By(k)) - \alpha s(y(k)) - h(x(k)) - A\alpha y(k) - K(x(k) - \alpha y(k)) + \alpha By(k) + \alpha s(y(k)) = (A - K) e(k)$$

构造 Lyapunov 函数  $V(k) = e^{T}(k) e(k)$ ,则其 一阶差分为

$$\Delta V(k) = V(k+1) - V(k) = e^{T}(k+1) e(k+1) - e^{T}(k) e(k) = e^{T}(k) [(A - K)^{T}(A - K) - I]e(k) \leq \{\lambda_{\max} [(A - K)^{T}(A - K) - 1]\} e^{T}(k) e(k)$$

选取适当的 K 值,总可以使矩阵的最大特征值  $\lambda_{\max}$  [(A - K)<sup>T</sup>(A - K)] < 1 从而  $\Delta V(k)$  < 0 故 系统是广义投影同步的.

#### 离散时滞异结构混沌系统的投影 2 同步

考虑如下离散时滞混沌系统

$$\begin{cases} x(n+1) = f(x(n-m)) \\ y(n+1) = g(y(n-m)) + u(n) \\ (@cwads x (x + 1)) = f(x(n-m)) = \\ Ax(n-m) + h(x(n-m)) = \\ Ax(n-m) + h(x(n-m)) = \\ (Ax(n-m) + h(x(n-m)) = \\ By(n-m) + s(y(n-m)) + u(n)$$
(5)  
cru2 Afta  $\lambda_{max} [(A-K)^T(A-K)] < 1$ ,  
Actively at the equation of the equ

$$\begin{bmatrix} e^{T}(n+1) e(n+1) - e^{T}(n) e(n) \end{bmatrix} + \\ \begin{bmatrix} -e^{T}(n-m) e(n-m) + e^{T}(n) e(n) \end{bmatrix} = \\ e^{T}(n+1) e(n+1) - e^{T}(n-m) e(n-m) \\ 将 ⑦ 代入上式可得$$

=

 $e^{T}(n-m) [(A - K)^{T}(A - K) - I]e(n-m) \leq$  $\{\lambda_{max} [(A - K)^{T} (A - K)] - 1\} e^{T} (n - m) e(n - m) \}$ 

选取适当的 K 值 ,总可以使矩阵的最大特征值  $\lambda_{\max}$  [(A - K)<sup>T</sup>(A - K)] < 1 从而  $\Delta V(k)$  < 0 故 系统是广义投影同步的.

#### **3** 数值算例

笔者以 Chen 系统和 Liu 系统为例 ,通过数值算 例验证本文方法的有效性.

设 Chen 系统为驱动系统

$$x = [x_{1}(k) \ x_{2}(k) \ x_{3}(k)]^{T}$$

$$A = \begin{bmatrix} -35 \ 35 \ 0 \\ -7 \ 28 \ 0 \\ 0 \ 0 \ 3 \end{bmatrix}$$

$$h(x(k)) = [0, -x_{1}x_{3}, x_{1}x_{2}]^{T}$$

$$\emptyset \text{ Liu } \mathbf{\tilde{K}} \mathbf{\tilde{K}} \mathbf{\tilde{h}} \mathbf{\tilde{m}} \mathbf{\tilde{K}} \mathbf{\tilde{K}}$$

$$y = [y_{1}(k) \ y_{2}(k) \ y_{3}(k)]^{T}$$

$$s(y(k)) = [0, -y_{1}y_{3}, y_{1}^{2}]^{T}$$

$$\boldsymbol{B} = \begin{bmatrix} -10 & 10 & 0 \\ 40 & 0 & 0 \\ 0 & 0 & -2.5 \end{bmatrix}$$
$$\boldsymbol{K} = \begin{bmatrix} 1.193 & 10.578 & -0.437 \\ 1.193 & 10.578 & -0.437 \\ 1.193 & 10.578 & -0.437 \end{bmatrix}$$

无妨取比例因子 $\alpha = 0.5$ ,系统的初始值分别设 定为

 $\begin{bmatrix} x_1(0) & x_2(0) & x_3(0) \end{bmatrix} = \begin{bmatrix} 0.23 & 0.23 & 0.23 \end{bmatrix}$  $\begin{bmatrix} y_1(0) & y_2(0) & y_3(0) \end{bmatrix} = \begin{bmatrix} 35 & 7.41 & 13.9 \end{bmatrix}$ 

系统误差定义为  $e_i = x_i - y_i$ (*i* = 1 2 3) 则在 选取控制律 ⑧<sup>\*</sup> 的作用下 算例中 Chen 系统和 Liu 系统是混沌同步的 其系统误差曲线如图 1 所示. 由 图 1 可知 3 条曲线在 *t* = 5.75 s 后实现了同步.

#### 4 结论

本文研究了离散异结构混沌系统的广义投影 同步问题以及离散时滞异结构混沌系统广义投影 同步问题,给出了控制律的设计方案,最终得到选 取适当的可调参数 *K*,即可实现驱动系统与响应系 统投影同步这一结论.





参考文献:

- [1] 涂俐兰,柯超,丁咏梅.随机扰动下一般混沌系统的 H<sub>∞</sub>同步[J].物理学报,2011,60(5):8031.
- [2] 李秀春,谷建华,王云岚,等.一类带有未知参数的受 扰混沌系统的观测器同步[J].物理学报,2011,60 (5):5051.
- [3] 杨东升, 张化光, 李爱平, 等. 基于模糊模型的不同结构的混沌系统同步[J]. 物理学报 2007 56(6):1335.
- [4] 毛北行 孟晓玲. 一类离散复杂网络混沌系统的输出 耦合滑膜同步控制[J]. 郑州轻工业学院学报: 自然科 学版 2013 28(2):103.
- [5] 李建芬,李农.一类混沌系统的修正函数投影同步
   [J].物理学报 2011 60(8):5071.
- [6] 毛北行 程春蕊,卜春霞.Lurie 混沌系统的修正函数投影同步[J].数学杂志 2013 33(4):717.
- [7] Mainieri R ,Rehacek J. Projective synchronization in threedimensional chaotic systems [J]. Physical Review Letters , 1999 §2(15): 3042.
- [8] 王宇野,许红珍. 异结构不确定混沌系统的广义投影 同步[J]. 系统工程与电子技术 2010 32(2):355.
- [9] 曾强洪,朱石坚,楼京俊,等.异结构混沌系统的广义 投影同步研究[J].武汉理工大学学报,2009,31 (15):102.

\* 控制律⑧:

$$\boldsymbol{u}(k) = \begin{bmatrix} 0.597x_1 - 6.55y_1 + 5.29x_2 + 3.6y_2 - 0.22x_3 + 0.11y_3 \\ -0.5x_1x_2 - y_1y_3 + 0.597x_1 + 11.45y_1 + 5.29x_2 + 4.35y_2 - 0.22x_3 + 0.11y_3 \\ 0.5x_1x_2 + y_1y_2 + 0.597x_1 - 0.3y_1 + 5.29x_2 - 2.65y_2 - 0.22x_3 + 0.11y_3 \end{bmatrix}$$