文章编号: 2095-476X(2015) 02-0006-05

钇离子钙位掺杂对 CaCu₃ Ti₄ O₁₂ 陶瓷材料压敏性能的调控

陈镇 P^1 , 项会 $\mathbb{P}^{1,2}$, 李涛¹, 张雨¹, 陈鑫¹, 孙新科²

(1. 郑州轻工业学院 物理与电子工程学院,河南 郑州 450002;2. 郑州轻工业学院 材料与化学工程学院,河南 郑州 450001)

摘要: 采用传统固相反应法制备了 $Ca_{(1-x)} Y_x Cu_3 Ti_4 O_{12}$ (*x* = 0 0.005 0.010 0.015 0.020 0.030 , 0.040) 陶瓷样品. 利用 X 射线衍射仪、扫描电子显微镜及高压数字源表等测试手段,对所得样品的 微观结构和压敏性能进行了表征,并分析讨论了晶界势垒变化影响体系压敏性能的原因.结果表明, 不等价的钇离子(Y³⁺) 钙位掺杂未引起体系结构相变; 体系晶粒生长与掺杂量有明显的关联 掺杂 改变了样品的致密度及晶界处的化学环境; Y³⁺掺杂对 CaCu₃Ti₄O₁₂陶瓷材料压敏性能有明显的调控 作用, 适量掺杂 Y³⁺ (*x* = 0.010 ~ 0.020) 可显著提高样品的非线性系数和压敏电压. 关键词: 钇离子钙位掺杂; CaCu₃Ti₄O₁₂陶瓷材料; 压敏性能; 势垒高度 中图分类号: O482.4 文献标志码: A **DOI**: 10.3969/j. issn. 2095 – 476X. 2015. 02.002

Regulation on the non-ohmic properties of CaCu₃Ti₄O₁₂ ceramics material by yttriumion doping on calcium

CHEN Zhen-ping¹, XIANG Hui-wen¹², LI Tao¹, ZHANG Yu¹, CHEN Xin¹, SUN Xin-ke²

(1. College of Physics and Electronic Engineering Zhengzhou University of Light Industry Zhengzhou 450002 , China;
2. College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 , China)

Abstract: The polycrystalline $Ca_{(1-x)} Y_x Cu_3 Ti_4 O_{12}$ (x = 0, 0.005, 0.010, 0.015, 0.020, 0.030, 0.040) ceramics samples were prepared by traditional solid-state reaction method. The microstructure and non-ohmic properties were characterized by X-ray diffraction scanning electron microscope and the high-voltage digital source-meter. The effect mechanism of the variation in grain boundary barrier on the non-ohmic properties was also discussed. The results presented that there was no phase transition in Y^{3+} -doped $CaCu_3 Ti_4 O_{12}$ samples while the grain growth was related to the doping content. Both the density and chemical environment in grain boundary of samples were influenced by doping. The non-ohmic properties of $CaCu_3 Ti_4 O_{12}$ ceramics material were modified by Y^{3+} doping and both non-linear coefficient and break-down voltage were apparently enhanced by doping with the appropriate content ($x = 0.010 \sim 0.020$). **Key words**: yttrium ion doping on calcium; $CaCu_3 Ti_4 O_{12}$ ceramics material; non-ohmic property;

barrier height

收稿日期:2015-01-19

基金项目:国家自然科学基金项目(11175159);郑州轻工业学院研究生科技创新项目(01015)

作者简介:陈镇平(1958—),女,安徽省宿州市人,郑州轻工业学院教授,主要研究方向为凝聚态物理.

0 引言

CaCu₃Ti₄O₁₂(CCTO) 是一种具有 ABO₃ 型体心 立方类钙钛矿结构的化合物 ,其中 Ca 原子和 Cu 原 子以1:3 物质的量之比共同占据 A 位 Ti 原子占 据 B 位^[1]. CCTO 陶瓷具有电容 - 压敏双功能特性, 其在较宽温区范围内具有较高的介电常数(约 10^4) 及电流 – 电压(I - V) 非线性特征^[2-4]. CCTO 因其 优良的电性能有望成为应用于电容性信息存储和 压敏电阻元器件等微电子领域的功能材料之一,受 到众多研究者的关注. 就其压敏性能而言 ,CCTO 陶 瓷材料的宏观非线性系数并不高 约为 3^[5]. 然而有 研究表明,CCTO内部两个晶粒之间的非线性系数 (α) 高达 912^[4] 不仅远高于其宏观非线性系数 也远 高于 $ZnO(\alpha > 50)$ 等传统压敏电阻材料的非线性系 数. 这一奇特的物理现象吸引研究者采用多种技术手 段 调控 CCTO 体系的压敏性能 如掺杂改性、制备工 艺改进等,同时探究影响 CCTO 压敏性能的微观机 理. 根据阻抗分析理论和大量研究结果,CCTO 陶瓷 材料内部存在电导不均匀性 即晶粒半导化和晶界绝 缘化 其中高阻态晶界处形成的静电势垒是影响 CCTO陶瓷材料压敏性能的主要因素^[4,6].

掺杂改性是提高材料性能的常用手段之一,也 是研究影响材料物理性能的重要手段. 众多研究者 采用离子在不同晶位替代掺杂以期对 CCTO 压敏性 能进行调控,J. Jumpatam 等^[7-8] 作了 Mg²⁺ 替代 Cu^{2+} 及 Sr²⁺ 替代 Ca²⁺的研究 发现一些同等价态的 离子替代掺杂可以不同程度地提高 CCTO 陶瓷材料 的压敏性能.利用氧化物作为第二相在 CCTO 中掺 杂的研究也有报道 ,L. J. Liu 等^[9]利用 Y₂O₃ ,La₂O₃ 等少量稀土氧化物掺杂改变了 CCTO 晶粒和晶界的 电输运性能,从而减小了体系的非线性系数,提高 了其压敏电压.本文拟选取与 Ca²⁺ 半径接近且不等 价的 Y³⁺对 CCTO 中的 Ca 位进行离子替代,以制备 出不同掺杂浓度的 $Ca_{(1-x)}$ Y_xCu₃Ti₄O₁₂ (x = 0~ 0.040) 陶瓷样品,通过物相、微观形貌表征及压敏性 能测试 研究不同 Y³⁺掺杂量对 CCTO 陶瓷材料的微 观结构及压敏性能的影响,并探究其影响机理,为 CCTO 陶瓷材料的压敏性能研究提供实验例证.

1 材料与方法

1.1 试剂与仪器
 试剂: CaCO₃(>99.00%),天津市大茂化学试

剂厂产; CuO(>99.00%),北京华腾化工有限公司 产; TiO₂(>99.99%),天津市风船化学试剂科技有 限公司产; Y₂O₃(99.99%),国药集团化学试剂有限 公司产.

仪器:769YP - 15A 型粉末压片机,天津市科器 高新技术公司产;XS105DU 型电子天平,上海梅特 勒 - 托利多仪器有限公司产;SJG - 16B 型管式电 炉,洛阳神佳窑业有限公司产;XRD - 7000S/L 型 X 射线粉末衍射(XRD)仪,津岛国际贸易(上海)有限 公司产;JSM - 7000F 型扫描电子显微镜(SEM),捷 欧迪拓姆(上海)贸易有限公司产;Keithley2410 型 高压数字源表,美国 Keithley仪器公司产;Agilent4294A 型精密阻抗分析仪,美国 Agilent 科技公 司产.

1.2 制备及表征

样品制备:将各原料按照化学式 $Ca_{(1-x)}$ Y_xCu₃Ti₄O₁₂($x = 0.000 \ p.005 \ p.010 \ p.015 \ p.020$, 0.030 p.040)名义计量比进行称量,将称量好的各 组样品在玛瑙研钵中充分研磨3h,使其混合均匀. 然后将以上样品粉末在950 °C条件下预烧12h,得 到的样品再次进行研磨,并添加适量聚乙烯醇 (PVA)作为粉料粘结剂,然后在约11 MPa的压力 条件下压制成直径约10 mm,厚度约2 mm 的圆形 薄片.将得到的各组圆形薄片在空气中以1080 °C 温度烧结12h,并随炉自然冷却至室温.选取烧结好 的样品用细砂纸打磨其表面,以去除表面氧化层, 使其具有平整均匀的表面,然后涂上银浆制成电 极,以备测试电流强度-电场强度(J - E)关系曲线 和进行阻抗分析.

结构及性能表征:用 XRD 对样品的物相结构进 行表征,扫描角度为 20°~70°;用 SEM 对样品断面 的微观形貌进行表征,放大倍数为 5 000 倍;用高压 数字源表测试样品的 J - E 非线性关系,电压范围 0~1 000 V;用阻抗分析仪检测样品的交流电阻率, 测试频率范围为 40 Hz ~5 MHz.

2 结果与讨论

2.1 XRD 图谱分析

图 1 为 $Ca_{1-x}Y_xCu_3Ti_4O_{12}$ ($x = 0.000 \sim 0.040$) 陶瓷样品的 XRD 图谱.由图 1 可知,所有样品的主 衍射峰均与体心立方结构的 CCTO 标准衍射峰 (PDF No. 21 – 0140)吻合,表明在本实验掺杂浓度 范围内($x = 0.005 \sim 0.040$), Y^{3+} 掺杂并未使 CCTO 体系发生明显的结构相变 除x = 0.015样品的衍射 图谱中存在少量杂峰(如图 1 中* 标示处)外 其他 样品中未发现明显的第二相存在. XRD 结果表明, 大部分掺杂的 Y^{3+} 已进入 CCTO 晶格内部,与之形 成固溶体结构,少量存在于晶界处的杂相因其含量 低于本实验仪器检测精度而未被观察到.

图 1 $Ca_{(1-x)} Y_x Cu_3 Ti_4 O_{12}$ 陶瓷样品的 XRD 图谱

2.2 SEM 形貌分析

图 2 为 $Ca_{(1-x)}$ Y_xCu₃Ti₄O₁₂ 陶瓷样品断面的 SEM 图(放大倍数为5000倍). 由图 2 可见, Y³⁺ 掺 杂量对 CCTO 样品的晶粒生长有较大影响.未掺杂 的 CCTO 样品晶粒生长饱满 晶界分布清晰 晶粒大 小不均 尺寸分布在 3~7 µm 范围内(如图 2a) 所 示). 小掺杂量(x=0.005) 样品晶粒饱满, 平均晶粒 尺寸较纯 CCTO 无明显变化 但粒径分布更均匀(如 图 2b) 所示); x = 0.010 样品部分晶粒间开始出现 "粘连"现象(如图 2c)箭头处);当掺杂量继续增加 $(x = 0.015 \sim 0.020)$ 更多的晶粒之间发生"粘连", 因晶粒间空隙减少 样品致密度增强(如图 2d) —e) 所示). 当掺杂量 *x* ≥0.030 时 样品中出现大量未生 长完全的小晶粒 ,且晶粒分布疏松 ,孔洞增多 ,样品 致密度下降(如图 2f) — g) 所示). 其原因是 在烧结 过程中 这些大掺杂量样品中因掺杂引起的存在于 晶界处的杂质阻碍了晶界的移动,抑制了晶粒的有 效生长.

2.3 压敏性能分析

图 3 为 $Ca_{1-x}Y_xCu_3Ti_4O_{12}$ 陶瓷样品的 J - E 非 线性特征关系曲线. 由图 3 可以看出 , Y^{3+} 掺杂对于 体系压敏性能有明显的调制作用. 对于压敏电阻陶

g)x=0.040 图 2 Ca(1-1) Y_xCu₃Ti₄O₁)陶瓷样品断面 SEM 图

瓷材料,其压敏性能通常由非线性系数 α 和压敏电压 $E_{\rm b}$ 两个参量来表征,其中 α 由如下经验公式得到^[10]:

$$I = KV^{\alpha}$$
 (1)

$$\alpha = \frac{\lg(I_2/I_1)}{\lg(V_2/V_1)}$$
⁽²⁾

式①中 I 和 V 分别为测试电流和电压值 K 为 常量; 式②中 V_1 和 V_2 分别为电流 I_1 和 I_2 下的电 压 本实验中取 $I_1 = 0.1$ mA $I_2 = 1$ mA. E_b 定义为电 流密度为 1 mA/cm² 时的电场强度值. 根据 J - E 实 验结果和公式②,计算得到 α 值和 E_b 值见表 1. 由 表 1 可知 掺杂后陶瓷样品的 α 值及 E_b 值较未掺杂 样品均有明显提高,前者的 E_b 值提高了一个数量 级 其中掺杂量 x = 0.010 时样品具有最大的 α 值和 E_b 值 表现出良好的非线性特征. 随着掺杂量的继

表1 $Ca_{1-x}Y_{x}Cu_{3}Ti_{4}O_{12}$ 陶瓷样品的 非线性系数 α 压敏电压 E_{b} 及势垒高度 Φ_{B}

x	α	$E_{\rm b}/(~{\rm V}~{ullet}~{\rm cm}^{-1})$	$arPhi_{ m B}/{ m eV}$	_
0.000	1.04	268	0.65	
0.005	1.24	1 760	0.70	
0.010	4.20	3 820	0.82	
0.015	3.46	2 690	0.80	
0.020	4.05	3 795	0.83	
0.030	2.89	2 885	0.78	
0.040	1.85	2 202	0.74	

续增加(x > 0.010) 样品的 α 值和 E_{b} 值增幅减小, 但仍高于未掺杂样品.

根据半导体理论,CCTO 陶瓷材料表现出的这 种 J – E 非线性响应与样品内部晶界处的肖特基势 垒有关,其关系为^[11]

$$\ln\left(\frac{J}{AT^2}\right) = \left(\frac{\beta}{k_{\rm B}T}\right)E^{\frac{1}{2}} - \frac{\Phi_{\rm B}}{k_{\rm B}T} \qquad (3)$$

其中 理查森常数 $A = 1\ 200\ \text{mA} \cdot \text{mm}^{-2} \cdot \text{K}^{-2}$,玻尔 茲曼常数 $k_{\text{B}} = 1.38 \times 10^{-23}\ \text{J/K}\beta$ 为与势垒宽度有 关的常数 \mathcal{P}_{B} 为势垒高度 T为测试温度(300 K). 由 J - E 实验结果和公式③得到各样品的 $\ln\left(\frac{J}{AT^{2}}\right)$ 与 $E^{1/2}$ 关系曲线如图 4 所示 通过对图 4 中曲线拟合计 算得到势垒高度 \mathcal{P}_{B} 值见表 1. 对比表 1 中 3 个参量 的变化趋势可以看出 ,掺杂引起的 \mathcal{P}_{B} 值的变化与 α 值的变化具有相似的趋势 ,其中 $x = 0.010 \sim 0.020$ 样品具有较大的 \mathcal{P}_{B} 值. 掺杂样品中 \mathcal{P}_{B} 值的变化是 由于不等价离子掺杂改变了晶界处的缺陷分布和 晶界电阻所致.

Y³⁺作为施主离子替代 Ca²⁺ 缺陷方程如下:

 $Y_2O_3 \rightarrow 2Y_{Ca} \cdot +2e^- + 2O_0 + \frac{1}{2}O_2$

在掺杂样品烧结过程中,施主掺杂形成的多余 电子被正常格点上的阳离子俘获成为弱束缚电子, 在一定条件下可作为载流子,提高晶粒的半导化; 另一方面,杂质离子 Y^{3+} 在烧结冷却时易在晶界处 偏析,导致晶粒边界与晶界间耗尽层的形成,这是 掺杂后样品晶界势垒高度提高的原因.但过量的 Y^{3+} 积聚会阻碍电子和缺陷离子的形成和输运,限 制晶界势垒的形成,这是高掺杂量 $x = 0.030 \sim$ 0.040 样品势垒高度低于 x = 0.020 样品、非线性特 性减弱的原因.

样品晶界电阻的变化也是影响体系晶界势垒 的一个因素. 对于晶粒半导化的 CCTO 陶瓷样品 其 在低频下的电阻率主要来自样品内部晶界电阻的 贡献 高频电阻率主要来自晶粒的贡献^[12].表2给 出了利用交流阻抗分析得到的样品在 40 Hz 和 5 MHz下的交流电阻率. 由此可知, 掺杂后样品在低 频 40 Hz 处的交流电阻率均明显升高,表明 Y³⁺ 掺 杂引起晶界电阻增大 这也是掺杂引起样品晶界势 垒高度增加的一个因素.但掺杂量较大的 *x* = 0.030~0.040 样品在低频处具有最大的交流电阻 率(高达 1 272 k Ω ・cm) 这是因为掺杂量过多造成 样品内部产生了一些大的缺陷空隙,平均晶粒尺寸 减小(如图2所示),阻碍了晶粒间载流子的传输. 在5 MHz 高频条件下 x < 0.015 样品电阻率变化不 明显; $x = 0.015 \sim 0.020$ 样品的电阻率较未掺杂样 品降低了约 30 $\Omega \cdot cm$ 表明该掺杂量能够有效促进 晶粒的半导化; 而 $x = 0.030 \sim 0.040$ 样品的交流电

表2	Ca _{1-x} Y _x Cu ₃ Ti ₄ O ₁₂ 陶瓷样品
在物	持定频率下的交流电阻率

x	40 Hz 下交流 电阻率/(kΩ・cm)	5 MHz 下交流 电阻率/(Ω・cm)
0.000	377	117
0.005	470	116
0.010	582	122
0.015	809	87
0.020	592	84
0.030	1 272	219
0.040	988	196

阻率明显高于其他样品,这与此掺杂范围样品的晶 粒生长不完全、平均晶粒尺寸和致密度减小有关.

3 结论

本文采用传统固相反应法制备了 Ca_{1-x} Y_xCu₃Ti₄O₁₂($x = 0.000 \ p.005 \ p.010 \ p.015 \ p.020$, 0.030 p.040)陶瓷样品,通过 XRD ,SEM 及压敏性 能测试,研究了 Y³⁺掺杂对 CCTO 陶瓷材料物相结 构、微观形貌和压敏性能的影响 结果如下.

 1) 在选取掺杂浓度范围内,Y³⁺ 掺杂未引起 CCTO的结构相变;但微观形貌与掺杂量之间存在关 联:少量掺杂 x = 0.005 时,对晶粒生长影响不明显; x = 0.010~0.020 时,样品致密度增强; x = 0.030~ 0.040 时,晶粒尺寸减小,晶粒间空隙增多.

2) 压敏性能测试结果表明,掺杂样品的 α 值和 E_b 值较未掺杂样品有明显提高,掺杂量 x = 0.010时样品的 α 值及 E_b 值达到最大值,分别为 4.20 和 3 820 V/m,表明适量的 Y³⁺掺杂可有效改善 CCTO 陶瓷材料的压敏性能.

3)利用不等价离子掺杂引起的结构缺陷和晶 界势垒变化分析了影响体系压敏性能的原因:掺杂 样品压敏性能的提高是由于 Y³⁺不等价掺杂改变了 CCTO 陶瓷样品晶界处的缺陷分布,使晶界电阻增 大,有效提高了晶界势垒高度,宏观上表现为压敏 性能的提高.

参考文献:

[1] Bochu B ,Deschizeaux M N ,Joubert J C ,et al. Synthèse et

caractérisation d'une série de titanates pérowskites isotypes de [CaCu₃](Mn_4) O₁₂ [J]. Journal of Solid State Chemistry ,1979 29(2):291.

- [3] Homes C C ,Vogt T ,Shapiro S M ,et al. Optical response of high-dielectric-constant perovskite-related oxide [J]. Science Magazine 2001 293(5530):673.
- [4] Chung S Y ,Kim I D ,Kang S J L. Strong nonlinear current-voltage behavior in perovskite-derivative calcium copper titanite [J]. Nature Materials 2004 3(11):774.
- [5] 曹蕾 刘鹏 周剑平,等. CaCu₃Ti₄O₁₂-MgTiO₃ 陶瓷的介 电性能与 *I* - *V* 非线性特征 [J]. 物理学报,2011,60 (3):689.
- [6] Ponce M A ,Ramirez M A ,Schipani F et al. Electrical behavior analysis of *n*-type CaCu₃Ti₄O₁₂ thick films exposed to different atmospheres [J]. Journal of the European Ceramic Society 2015 35(1):153.
- [7] Jumpatam J ,Putasaeng B ,Yamwongn T ,et al. A novel strategy to enhance dielectric performance and non-ohmic properties in Ca₂Cu_{2-x}Mg_xTi₄O₁₂ [J]. Journal of the European Ceramic Society 2014 34(12):2941.
- [8] Li T ,Liu D W ,Dai H Y et al. Effect of defect on the nonlinear and dielectric property of Ca_(1-x) Sr_xCu₃Ti₄O₁₂ ceramics synthesized by sol-gel process [J]. Journal of Alloys and Compounds 2014 599:145.
- [9] Liu L J ,Fang L ,Huang Y M ,et al. Dielectric and nonlinear current-voltage characteristics of rare-earth doped CaCu₃Ti₄O₁₂ ceramics [J]. Journal of Applied Physics , 2011 ,110(9):094101.
- [10] Lunkenheimer P Fichtl R Ebbinghaus S G et al. Nonintrinsic origin of the colossal dielectric constants in CaCu₃Ti₄O₁₂
 [J]. Physical Review B 2004 70(17):172102.
- [11] Zang G Z ,Zhang J L ,Zheng P ,et al. Grain boundary effect on the dielectric properties of CaCu₃Ti₄O₁₂ ceramics [J]. Journal of Physics D: Applied Physics ,2005 ,38 (11):1824.
- [12] Adams T B ,Sinclair D C ,West A R. Characterization of grain boundary impedances in fine-and coarse-grained CaCu₃Ti₄O₁₂ ceramics [J]. Physical Review B ,2006 ,73 (9):094124.