

引用格式:吴照洋,谷一鸣,何宇,等. 铀尾矿基多孔陶粒对对苯二酚的吸附能力研究[J]. 轻 工学报,2018,33(2):13-19. **中图分类号:**TQ174.1 **文献标识码:**A **DOI**:10.3969/j.issn.2096-1553.2018.02.003 **文章编号:**2096-1553(2018)02-0013-07

轴尾矿基多孔陶粒对对苯二酚的吸附能力研究 Study on adsorption capacity of

uranium tailings-based porous ceramisite for hydroquinone

GAO Ruqin²

吴照洋¹,谷一鸣²,何宇²,丁洲乐²,师梓宸²,李梦雨², 高如琴² WU Zhaoyang¹, GU Yiming², HE Yu², DING Zhoule², SHI Zichen², LI Mengyu²,

中国地质科学院 郑州矿产综合利用研究所,河南 郑州 450006;
 华北水利水电大学 环境与市政工程学院,河南 郑州 450046

1. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou 450006, China;

2. School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

摘要:以无害处理的铀尾矿为主要原料,制备了一种新型环境功能材料——铀 尾矿基多孔陶粒,并考察其对对苯二酚的吸附能力.结果表明,当 pH = 7 时,铀 尾矿基多孔陶粒对对苯二酚的吸附效果最好,去除率和吸附量分别为 91.2% 和 4.56 mg/g;铀尾矿基多孔陶粒对对苯二酚的吸附过程中液膜扩散占据主导,用 准一级动力学方程描述更为准确;Langmuir 方程和 Koble-Corrigan 方程对吸附 等温线的数据拟合度较高,铀尾矿基多孔陶粒吸附特性符合单层分子层定点位 吸附,且属于非均匀的复合吸附体系;液膜扩散模型对铀尾矿基多孔陶粒吸附对 苯二酚过程有较高的拟合度,其相关系数 R^2 = 0.847 8,速率常数 k = 0.041 7.

关键词: 铀尾矿基多孔陶粒; 对苯二酚;吸附动力 学模型;吸附热力学 模型;动边界模型

Key words:

uranium tailings-based porous ceramisite; hydroquinone; adsorption kinetics model; adsorption thermodynamics model; dynamic boundary model

收稿日期:2018-02-27

基金项目:中国地质调查局地质矿产评价专项项目(YMZB - 2017014F);华北水利水电大学大学生科技创新项目 (2017XB086)

作者简介:吴照洋(1982—),男,河南省唐河县人,中国地质科学院助理研究员,主要研究方向为矿物加工和综合利用. 通信作者:高如琴(1969—),女,河南省浚县人,华北水利水电大学副教授,博士,主要研究方向为陶瓷和环境功能材料. **Abstract**: Taking uranium tailings treated to hazard-free as the main raw material, a new type of environment fuctional material-uranium tailings-based porous ceramisite was prepared. The adsorption capacity of uranium tailings porous ceramisite for hydroquinone were investigated. The results indicated that, the removal rate and adsorption capacity of uranium tailings-based porous ceramisite for hydroquinone uranium tailings were 91.2% and 4.56 mg/g respectively with a pH value of 7. During the adsorption of the uranium tailing-based porous ceramsite for hydroquinone, the liquid film diffusion dominated and was more accurately described by the pseudo-first-order kinetic equation. Data fitting degree of Langmuir equation and Koble-Corrigan equation of adsorption isotherm was higher. The adsorption properties of uranium tailings-based porous ceramsite dors by a single layer molecular layer, and it was a non-uniform composite adsorption system. The adsorption process of uranium tailings porous ceramisite for hydroquinone was a high fitting for the liquid film diffusion model. The R^2 and k value were 0.847 8 and 0.041 7 respectively.

0 引言

我国大气污染形势日趋严峻,以清洁能源 替代化石燃料已成为必然趋势.我国核电装机 容量仅占全国发电总量的2.39%,而世界主要 发达国家,如美国、英国、德国、加拿大等国家的 核能份额均超过15%,法国更高达76%^[1].随 着我国核电的不断发展,对铀的需求量持续增 加^[2].据统计,我国生产1 t 铀产生1200 ~ 5000 t 废石^[3].这些废石和尾矿中均含有大量的 放射性物质和重金属.随着铀尾矿基处理技术的 发展,化学沉淀法^[4]、萃取法^[5-7]、膜法^[8-9]、离子 交换法^[10]和吸附法^[11-12]等先进方法普遍被投 入应用,有望实现对铀选矿富集的完全无害化 处理.

对苯二酚是一种重要的化工原料和化工合成中间体,广泛应用于显影剂、橡胶中的抗氧剂和合成氨助溶剂.但是,对苯二酚是一种剧毒难降解的、对人体有毒害作用的重要有机污染物,且易氧化成具有更大毒性的苯醌而损害人体中枢神经系统和肝脏,是工业废水中的主要污染物之一,对生物体和环境也会造成极大的危害^[13-14].

陶粒是一种外观呈球形或圆柱体的人造轻 集料,内部含有很多细小气孔和高强度的晶体 和玻璃体.陶粒因具有密度小、孔隙率较高、比 表面积大、吸附能力强等优异性能,被广泛应用 于建筑材料、污水处理、石油化工、园艺园林等 领域.鉴于此,本文拟制备一种新型环境功能材 料——铀尾矿基多孔陶粒,并考察其对对苯二 酚的吸附效果,以期为实现铀尾矿的二次利用、 资源的优化配置和可持续发展提供参考.

1 材料与方法

1.1 主要材料与设备

主要材料:铀尾矿石(主要化学组成的质量分数 SiO₂ 为 70.38%,A1₂O₃ 为2.37%,K₂O 为 1.42%,CaO 为 10.58%),选自陕西华阳川铀 矿多金属矿区选矿试验尾矿(已经无害化处 理);碳粉(工业纯),南京格瑞发碳素材料有限 公司提供;铝矾土(325 目,A1₂O₃ 质量分数≥ 65%,工业纯),阳泉浩添威耐火材料有限公司 产;石英(200 目,SiO₂ 质量分数≥99%,工业 纯),灵寿县新辉矿业加工厂产;长石(工业 纯),北京市通广精细化工公司产;对苯二酚 (分析纯),青岛优索化学科技有限公司产.

主要设备: KM - 1 型高效快速研磨机, FN101 - 0A 型电热鼓风恒温干燥箱, SX2 -10 - 17 高温箱式电阻炉,湘潭华丰仪器制造有 限公司产;ST - 07B 多功能粉碎机,上海树立仪 器仪表有限公司产;SYC - 15 超级恒温水浴,南 京桑力电子设备厂产;Lambda 型紫外 – 可见分 光光度计,美国 PerkinElmer 公司产.

1.2 样品的制备

称取一定质量的铀尾矿石、碳粉、铝矾土和 硅酸钠,按照质量比 84:6:18:2 混合均匀, 加入装有研磨介质($\varphi \approx 8 \text{ mm}$ 的 ZrO₂ 瓷球)的 球磨机内研磨 20 min,然后放入烘箱内于 105 ℃ 烘干,经粉碎机打散,滚球机成型,并置 箱式电阻炉内于 1060 ℃下煅烧 2 h^[15],得铀尾 矿基多孔陶粒.

1.3 吸附实验

称取1g铀尾矿基多孔陶粒置于150 mL 锥形瓶中,加入50 mL浓度为50 mg/L的对苯 二酚溶液后,密封锥形瓶并放入恒温振荡摇床 中震荡24 h,温度和振荡频率分别设定为25 ℃ 和120 r/min,用0.1 mol/L的HCl或NaOH溶 液调节溶液的pH值为2~9.吸附平衡后,上清 液用0.45 μ m 膜滤过滤后,用紫外 – 分光光度 计测其在288 nm 处的吸光度.根据 Lambert-Beer 定律,最大波长处的吸光度与浓度有很好 的线性关系,即可用吸光度计算对苯二酚的去 除率 r 和吸附量 q_e :

$$r = \frac{(C_0 - C_e)}{C_0} \times 100\%$$
 (1)

$$q_{\rm e} = \frac{V \times (C_0 - C_{\rm e})}{m} \tag{2}$$

式中, C_0 为吸附前对苯二酚的质量浓度/ (mg·L⁻¹); C_e 为吸附平衡时对苯二酚的质量 浓度/(mg·L⁻¹);V 为溶液体积/L;m 为吸附 剂的质量/g.

1.4 吸附动力学模型、吸附热力学模型和动边
 界模型的建立

1.4.1 吸附动力学模型准一级动力学模型: $q_t = q_t (1 - e^{-k_t})$

准二级动力学模型:

$$q_t = \frac{k_2 q_{\rm e}^2 t}{(1 + k_2 q_{\rm e} t)}$$

Elovich 模型:

$$q_t = a + k \ln t$$

双常数模型:

$$q_t = e^{(a+k\ln t)}$$

式中, q_t 为t时刻的吸附量/(mg·g⁻¹); q_e 为吸附平衡时的吸附量/(mg·g⁻¹); k, k_1, k_2 为吸附速率常数;a为常数.

1.4.2 吸附热力学模型 Langmuir 等温线:

$$q_{\rm e} = \frac{q_{\rm m} k_{\rm L} C_{\rm e}}{1 + k_{\rm L} C_{\rm e}}$$

Toth 等温线:

$$q_{\rm e} = \frac{q_{\rm m}C_{\rm e}}{(k_{\rm Th} + C_{\rm e}^t)^{\frac{1}{t}}}$$

Redlich-Peterson 等温线:

$$q_{\rm e} = \frac{AC_{\rm e}}{1 + BC_{\rm e}^g}$$

Koble-Corrigan 等温线:

$$q_{\rm e} = \frac{AC_{\rm e}}{1 + BC_{\rm e}^n}$$

式中, q_m 为最大吸附容量/(mg·g⁻¹); C_e 为吸附平衡时溶液中吸附质的质量浓度/ (mg·L⁻¹), C'_e , C^g_e , C^n_e 为各模型中的常数; k_L 为 Langmuir isotherm 常数(与吸附作用的能量相 关); k_{Th} 为 Toth isotherm 常数;A,B为等温常数.

1.4.3 动边界模型 液膜扩散模型:

$$\ln(1-F) = -kt$$

颗粒内部扩散模型:

 $1 - 3(1 - F)^{2/3} + 2(1 - F) = kt$

化学吸附反应模型:

$$1 - (1 - F)^{1/3} = kt$$

式中,F为t时刻的吸附分数, $F = q_t/q_e$;k为速率常数.

2 结果与讨论

2.1 溶液 pH 值对铀尾矿基多孔陶粒吸附对 苯二酚的影响

图 1 为溶液 pH 值对铀尾矿基多孔陶粒吸

附对苯二酚的影响示意图.由图1可以看出,当 pH值在2~7的范围内,随着pH值的升高,铀 尾矿基多孔陶粒对对苯二酚的吸附量和去除率 均不断上升,当pH=7时,去除效果最好,吸附 量和去除率分别为4.56 mg/g和91.2%.pH> 7后,铀尾矿基多孔陶粒对对苯二酚的吸附能 力明显下降.原因是对苯二酚在酸性条件下离 解度较低,随着pH值的升高,对苯二酚的离解 程度增大,有利于吸附的进行;对苯二酚在碱性 环境下,其羟基进一步离解,与溶剂水分子形成 氢键占据了过多的吸附位点,导致铀尾矿基多 孔陶粒对对苯二酚的去除率下降.因此,后续实 验将溶液pH值调节为7进行.

2.2 吸附动力学实验结果分析

依据表1中的公式,分别进行准一级动力 学模型、准二级动力学模型、Elovich 模型和双 常数模型的非线性动力学吸附模型的拟合,铀 尾矿基多孔陶粒对对苯二酚的吸附动力学非线 性拟合情况见图2,拟合参数如下.

准一级动力学模型: R² = 0.979 0, q = 4.332 6, k = 0.106 2;

准二级动力学模型: R² = 0.953 0, q = 4.5057, k = 0.0382;

Elovich 模型: $R^2 = 0.669 \ 0, a = 2.108 \ 9, k = 0.384 \ 2;$

双常数模型: R² = 0.603 0, a = 0.917 7, k = 0.092 3.

对对苯二酚的吸附动力学非线性拟合图 Fig. 2 Nonlinear dynamic fitting curves of adsorption of hydroquinone by uranium tailings-based porous ceramsite

由图2可以看出,铀尾矿基多孔陶粒对对 苯二酚的吸附过程主要有两个阶段,在0~ 120 min 时,吸附量迅速增大,当t=120 min 时, 吸附量达到 4.35 mg/g;在 120 min 之后,吸附 量的增长缓慢,并逐渐趋于平稳,最终在 1440 min时,吸附量达到 4.4 mg/g. 其原因为: 在第一阶段,陶粒表面有大量吸附点位,吸附量 的上升较为迅速;在第二阶段,溶液中的对苯二 酚占据了陶粒表面大量的吸附点位,使得吸附 进行得较为缓慢. 准一级动力学方程的相关系 数($R^2 = 0.9790$)大于准二级动力学方程($R^2 =$ 0.953 0)、Elovich 和双常数方程. 准一级动力学 方程和准二级动力学方程可以较好地描述铀尾 矿基多孔陶粒对对苯二酚的吸附过程,准一级 动力学模型基于假定吸附过程受扩散步骤控 制,准二级动力学模型基于假定吸附速率受化 学吸附机理控制.准二级动力学模型包含了所 有的吸附,如液膜扩散、颗粒内扩散和化学吸附 等^[16],而铀尾矿基多孔陶粒对对苯二酚的吸附 是液膜扩散占据主导,而准一级动力学模型是 对整个吸附过程进行描述,所以用准一级动力 学模型描述铀尾矿基多孔陶粒对对苯二酚的吸 附过程更准确.

2.3 吸附热力学实验结果分析

用 Langmuir, Koble-Corrigan, Toth 和 Redlich-Peterson 吸附等温方程将铀尾矿基多孔陶粒 对对苯二酚的吸附实验数据进行拟合,结果见 图 3,拟合参数如下.

Langmuir 模型: $R^2 = 0.9503, q = 4.7608,$ k = 0.6313;

Toth 模型: $R^2 = 0.944 \ 0, q = 5.073 \ 5, k =$ 0.775 0; $t = 0.649 \ 4$;

Koble-Corrigan 模型: $R^2 = 0.9535$, a = 3.5976, b = 0.7152, n = 0.7181;

Redlich-Peterson 模型: $R^2 = 0.9406, A = 2.8528, B = 0.5756; g = 1.0100.$

由图 3 可以看出, Langmuir 方程和 Koble-Corrigan 方程对吸附等温线的数据拟合度较高. Langmuir 方程是单分子层吸附等温模型,即 吸附只发生在吸附剂的外表面, Koble-Corrigan 方程可用于描述均匀吸附与不均匀吸附的复合 吸附体系, 这表明该吸附过程较为复杂, 与陶粒

本身的多孔结构有关. 铀尾矿基多孔陶粒吸附 特性符合单层分子层定点位吸附,即陶粒上1 个活性吸附点位只吸附1个分子,单个吸附在 点位上的分子之间不发生转移,也不存在相互 作用,最大吸附量是定值. 同时,陶粒表面吸附 是非均匀的,属于非均匀的复合吸附体系.

2.4 动边界实验结果分析

动边界模型可用来描述多孔吸附剂的吸附 行为,铀尾矿基多孔陶粒表面的吸附过程可分 为3步:液膜扩散—颗粒内部扩散—颗粒内部 活性基团上发生的化学吸附.依据1.4.3,动边 界模型线性拟合见图4—图6,拟合参数见表1.

由表1的拟合参数可知,液膜扩散模型对 铀尾矿基多孔陶粒吸附对苯二酚有较高的拟合 度,其相关系数 R² =0.8478,而与颗粒内部扩

Fig. 5 The fitting line of particles diffusion

图6 化学吸附反应拟合图

Fig. 6 The fitting line of chemical adsorption reactions

表1 动边界模型拟合结果

Table 1 The fitting result of dynamic boundary model

动边界模型 拟合参数	液膜扩散	颗粒内部 扩散	化学吸附 反应
k	0.0417	0.001 9	0.001 6
R^2	0.8478	0.178 8	0.133 3

散模型拟合度次之,化学吸附反应模型拟合度 最低,这说明对苯二酚在陶粒表面的吸附速度 主要由液膜扩散控制.同时,也说明铀尾矿基多 孔陶粒对对苯二酚的吸附作用主要是由发生在 陶粒表面的微孔与材料表面的电荷吸附所导 致.通过 k 值可以判断吸附行为进行的快慢程 度,液膜扩散模型的 k 值为 0.041 7,远大于颗 粒内扩散和化学吸附反应模型拟合出的 k 值, 这说明液膜扩散在吸附过程中进行得相对迅速,而颗粒内部扩散和化学反应在吸附过程中 进行得则缓慢些.

3 结论

本文以无害处理的铀尾矿为主要原料,采 用干式研磨、滚球成型和高温锻烧工艺,制备了 一种新型环境功能材料——铀尾矿基多孔陶 粒,通过构建不同的吸附模型,探究铀尾矿基多 孔陶粒对对苯二酚的吸附效果,得到如下结论.

1) 对苯二酚在不同 pH 溶液条件下的离解 程度不同:在酸性条件下离解度较低,在碱性条 件下,对苯二酚上的羟基离解程度增大,与溶剂 水分子产生氢键占据了过多的吸附位点;pH = 7最有利于吸附的进行,这时的去除率和吸附 量可分别达到91.2%和4.56 mg/g.

2)准一级动力学方程和准二级动力学方程对轴尾矿基多孔陶粒吸附数据拟合度都较高,而液膜扩散在陶粒对对苯二酚的吸附过程中占据主导,故用准一级动力学方程更为准确.

3) Langmuir 方程和 Koble-Corrigan 方程对 吸附等温线的数据拟合度较高,铀尾矿基多孔 陶粒吸附特性符合单层分子层定点位吸附,同 时陶粒表面吸附是非均匀的,属于非均匀的复 合吸附体系.

4)用动边界模型对实验数据进行拟合,结 果表明液膜扩散模型对铀尾矿基多孔陶粒吸附 对苯二酚过程有较高的拟合度,即吸附过程与 速度的主要控制步骤为液膜扩散.同时也说明, 铀尾矿基多孔陶粒对对苯二酚的吸附作用主要 是由发生在陶粒表面的微孔与材料表面的电荷 吸附所导致.

该研究结果得到了最小能源消耗量下对苯 二酚吸附较好时的条件,确定了铀尾矿基多孔 陶粒对对苯二酚吸附的方式和理论依据,为其 进一步开发利用奠定了理论根据.

参考文献:

- [1] 徐超.冠醚接枝和胺肟化聚丙烯腈接枝壳聚 糖对水中铀(VI)吸附性能的研究[D].杭州: 浙江大学,2015.
- [2] 温鸿钧."华龙一号":核电发展新起点[J].
 中国电业(发电版),2014(10):43.
- [3] 张彪,张晓文,李密,等. 铀尾矿污染特征及综合治理技术研究进展[J]. 中国矿业,2015,24
 (4):58.
- [4] SANTOS E A, LADEIRA A C Q. Recovery of uranium from mine waste by leaching with carbonate-based reagents [J]. Environmental

Science & Technology, 2011, 45(8):3591.

- [5] PEREVALOV S, TOROPCHENOVA E. Microwave-assisted dissolution of ceramic uranium dioxide in TBP-HNO₃ complex [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(3):1613.
- [6] BELTRAMI D, COTE G, MOKHTARI H, et al. Recovery of uranium from wet phosphoric acid by solvent extraction processes [J]. Chemical Reviews, 2014, 114(24):12002.
- [7] KAUSAR A, BHATTI H N. Adsorptive removal of uranium from wastewater: a review [J]. Journal of the Chemical Society of Pakistan, 2013, 35(3):1041.
- [8] SEMIAO A J C, ROSSITER H M A, SCHAFER A I. Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration[J]. Journal of Membrane Science, 2010, 348(1/2):174.
- [9] KULKARNI P S, MUKHOPADHYAY S, GHOSH S K. Liquid membrane process for the selective recovery of uranium from industrial leach solutions[J]. Industrial and Engineering Chemistry Research, 2009, 48(6):3118.
- [10] 谢浩然,李庚,雷泽勇. DN400 X 1600 新型铀

离子交换试验装置树脂转移效率研究[J].铀 矿冶,2013,32(2):90.

- [11] 李松南.以蛋壳为原料制备多种吸附材料及 其铀吸附性能研究[D].哈尔滨:哈尔滨工程 大学,2013.
- [12] SAITO T, BROWN S, CHATTEJEE S, et al. Uranium recovery from seawater: Development of fiber adsorbents prepared via atom-transfer radical polymerization [J]. Journal of Materials Chemistry A,2014,2(35):14674.
- [13]朱岩琪,姜东娇,刘楠,等.纳米金修饰电极对 对苯二酚的电催化性能研究[J].山东化工, 2017,46(5):1.
- [14] 宋丹,陆曦,刘志英,等. O₃/H₂O₂ 催化氧化对 苯二酚的影响因素及急性毒性变化[J].环境 工程,2017,35(10):50.
- [15] 朱灵峰,黄豆豆,高如琴,等.硅藻土基多孔陶 粒的制备及对 Cu²⁺吸附性能研究[J]. 江苏 农业科学,2014,42(3):303.
- [16] LI G T, FENG Y M, CHAI X Q, et al. Equilibrium and thermodynamic studies for adsorption of 1,4-Benzoquinone by fly ash [J]. Nature Environment and Pollution Technology, 2015, 14 (4):865.