

引用格式:刘德伟,杨鹏,徐明升,等.还原剂浓度对纳米 VO₂(B)微结构及其电化学性能的影响[J].轻工学报,2020,35(3):28-36.
中图分类号:TM912 文献标识码:A
DOI:10.12187/2020.03.004
文章编号:2096-1553(2020)03-0028-09

还原剂浓度对纳米 VO₂ (B) 微结构 及其电化学性能的影响

Effect of reducing agent concentration on microstructure and electrochemical properties of Nano-VO₂(B)

刘德伟,杨鹏,徐明升,彭科,代海洋,李涛,薛人中,陈靖, 赵承周 LIU Dewei,YANG Peng,XU Mingsheng,PENG Ke,DAI Haiyang,LI Tao, XUE Renzhong,CHEN Jing,ZHAO Chengzhou

郑州轻工业大学 物理与电子工程学院,河南 郑州 450001 College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

关键词:

纳米 VO₂(B);微观形 貌;结构缺陷;电化学 性能

Key words:

Nano-VO₂(B); micromorphology; structural defect; electrochemical property **摘要**:以 V₂O₅ 为原料、草酸为还原剂,采用水热法制备不同草酸浓度下的系列 纳米 VO₂(B)样品($c(H_2C_2O_4)/c(V_2O_5) = x, 1.00 \le x \le 2.50$),对所制备样品的 物相结构、微观形貌和电化学性能进行表征和分析.结果表明:所制备的样品均 为单斜结构的纯相 VO₂(B);随着还原剂浓度的增大, VO₂(B)样品的形貌逐渐 由较小的纳米片变成较长的纳米棒;VO₂(B)样品的结构缺陷主要为微孔;所得 VO₂(B)样品均具有较好的可逆性和循环稳定性,其中,当 x = 1.75 时, VO₂(B) 样品具有较小的氧化还原峰电位差(0.111 V)和较小的电阻(0.770 Ω),且当电 流密度为 30 mA/g 时,具有最大的比电容值(105.00 F/g),表现出更好的电化 学性能.

收稿日期:2019-08-19

基金项目:国家自然科学基金项目(11405148,11775192,11975211);河南省教育厅项目(16A140022,14B140015) 作者简介:刘德伟(1979—),男,河南省濮阳市人,郑州轻工业大学副教授,博士,主要研究方向为新能源材料与器件. 通信作者:赵承周(1986—),男,山东省东明县人,郑州轻工业大学讲师,博士,主要研究方向为纳米材料与器件. Abstract: Using V_2O_5 as raw material, oxalic acid as reducing agent, a series of nano-VO₂(B) samples with different oxalic acid concentrations $(c(H_2C_2O_4)/c(V_2O_5) = x, 1.00 \le x \le 2.50)$ were prepared by hydrothermal method. The structure, micro-morphology and electrochemical performance of the prepared samples were characterized and analyzed. The results showed that the prepared samples were all pure phase VO₂(B) with monoclinic structure; with the increase of the concentration of reducing agent, the morphology of the VO₂(B) sample gradually changed from smaller nanoplates to larger nanorods; the structural defects of VO₂(B) samples were mainly micropores; the obtained VO₂(B) samples all had good cycle stability and reversibility. Among them, the VO₂(B) sample obtained with x = 1.75 had smaller redox peak potential difference (0.111 V) and smaller resistance (0.770 Ω), and when the current density was 30 mA/g, the VO₂(B) sample had the largest specific capacitance value, 105.00 F/g, showing better electrochemical performance.

0 引言

随着人类社会需求的不断提高,能源和环 境问题已变得越来越重要,能量存储问题被提 上日程,亟待解决.与传统的镍镉电池和镍氢电 池相比,锂离子电池具有能量密度高、循环寿命 长、无污染、无记忆效应等优点,可以作为便携 式电子设备、电动汽车和植入式医疗设备的动 力源,被认为是极具潜力的储能装置^[1-2].锂离 子电池必须在两个方面满足社会对能量存储的 新要求:一方面,电动汽车等大型设备不断增长 的需求,使得锂离子电池必须满足高容量、循环 耐久性等要求;另一方面,下一代二次电池的发 展,使得锂离子电池必须满足储能装置微型化 的需求.

在电极材料中,钒氧化物(VO,VO₂,V₂O₅ 等)具有能量密度高、成本低、资源丰富、适用 于大规模储能等优点,是极具潜力的锂离子电 池正极材料^[3-4].特别是钒氧化物的亚稳晶 型——单斜相 VO₂(B),具有利于锂离子嵌入 和脱嵌的二维层状结构,已成为锂离子电池中 最有前途的电极材料之一^[5-6].纳米材料因具 有较大的比表面积、理想的离子扩散路径等特 点,在锂离子电池应用方面受到了广泛关 注^[7-8].利用 VO₂已成功制备出一维的纳米线、 纳米棒^[9-10],二维的纳米片、纳米带^[11-12],三维 的纳米花^[13],以及其他由纳米晶组装而成的功 能性纳米结构,如分层异质结构、核/壳结构、介 孔等^[14].然而,VO₂(B)电极材料所存在的容量 较低、容量衰减较快等问题,阻碍了其进一步发 展.将电极材料尺寸纳米化,可有效增大其比表 面积,缩短锂离子的扩散路径,有利于提高其电 化学性能.

水热法是制备纳米颗粒简单有效的方法之 一,且可以通过改变压力、反应温度、反应时间、 溶液 pH 值等实验条件,对晶粒的形貌和尺寸 进行调控.而正电子对材料结构缺陷非常敏感, 可以选择性地检测空位等缺陷类型,是研究材 料结构缺陷信息的重要手段,通过测量正电子 寿命可以直观、准确地分辨缺陷类型^[15-16].基 于此,本文拟以 V₂O₅ 为原料、草酸为还原剂,采 用水热法制备不同草酸浓度下的系列纳米 VO₂(B)样品,并对样品的微结构和电化学性能 进行研究,以期为该类材料的微观结构研究提 供正电子实验例证.

1 材料与方法

1.1 主要材料与设备

主要试剂与材料:V₂O₅(分析纯),草酸(分 析纯),山东西亚化学股份有限公司产;无水乙 醇(高纯),天津市瑞金特化学品有限公司产; 乙炔黑(高纯),北京德科岛金科技有限公司 产;聚四氟乙烯(PTFE,质量分数 60%),阿拉 丁试剂(上海)有限公司产;泡沫镍,广胜佳新 材料有限公司产;KOH(质量分数 85%),天津 市科密欧化学试剂有限公司产.

主要设备:250 mL 高压反应釜,郑州博科 仪器设备有限公司产;XS105DU 电子天平,梅 特勒-托利多仪器(上海)有限公司产;300X 干燥箱,郑州科晶电炉有限公司产;769YP-15A 粉末压片机,天津市精拓仪器科技有限公 司产;D8 Advance X 射线衍射仪,德国 Bruker 公司产;Quanta 250 FEG 扫描电子显微镜,科视 达(中国)有限公司产;Model 265A 正电子湮没 寿命谱仪,美国 ORTEC 公司产;CHI660E 电化 学工作站,上海辰华仪器有限公司产.

1.2 VO₂(B)样品的制备

以 V_2O_5 为原料、草酸为还原剂,采用水热 法制备不同草酸浓度下的系列纳米 $VO_2(B)$ 样 品,其中草酸与 V_2O_5 的浓度比用 *x* 表示(*x* 分 别等于 1.00,1.50,1.75,2.00,2.25,2.50).在 室温条件下,首先向 60 mL 去离子水中分别加 入 0.545~0.136 g 的草酸,并将其置于磁力搅 拌器搅拌 30 min;待颗粒溶解后,向所得草酸溶 液中加入 1.09 g 的 V_2O_5 ,继续搅拌 30 min,直 至形成黄褐色的悬浊液;将悬浊液转入100 mL PTFE 内衬的高压反应釜中,于 180 ℃环境中反 应 48 h;待反应釜降至室温后,收集其中生成的 沉淀物,并分别用去离子水和无水乙醇多次交 替冲洗;将冲洗后的沉淀物置于 60 ℃的真空干 燥箱中干燥 8 h,即得所需 $VO_2(B)$ 样品.

1.3 VO₂(B)样品的表征

采用 X 射线衍射仪对室温下 VO₂(B)样品 的物相结构进行表征,靶材为 Cu Kα,衍射角为 10°~80°,步长为 0.02°;利用扫描电子显微镜 对 VO₂(B)样品的微观形貌进行表征,放大倍 数分别为 10 000 倍和 50 000 倍;采用寿命谱仪 测量 VO₂(B)样品的正电子寿命谱,正电子源 为强度约 13 μCi 的²² Na,并利用 PATFIT 程序 对寿命谱进行解析.

1.4 VO₂(B)样品的电化学性能测试

将所制备的系列纳米 VO₂(B)样品、导电 剂乙炔黑和粘结剂 PTFE 水溶液(质量分数 60%)按照质量比8:1:1 混合于乙醇溶剂中, 将所得混合浆料涂覆在泡沫镍上,然后用压片 机(压力8 MPa)将其压紧,再置于80℃烘箱中 加热6h,制成 VO₂(B)样品电极(泡沫镍上负 载样品电极材料的质量约为5 mg).

在电化学工作站上采用三电极体系对 VO₂(B)样品电极进行循环伏安(CV)、恒流充 放电、交流阻抗等电化学性能测试. 铂片金属电 极和饱和甘汞电极分别作为对电极和参比电 极,VO₂(B)样品电极为工作电极,电解液为 2 mol/L的 KOH 溶液. 其中,CV 曲线测试条件 为电压窗口 0.2~0.6 V,扫描速率 100 mV/s.

2 结果与分析

2.1 VO₂(B)样品的物相结构分析

图 1 为不同草酸浓度下所得 VO₂(B)样品 的 XRD 图. 由图 1 可以看出,6 组样品的衍射 峰均与单斜结构的 VO₂(B)标准衍射峰对应, 其中 VO₂(B)晶格常数为 a = 12.030, b =3.693, $c = 6.420, \beta = 107.0^{\circ}$ (JCPDS 31 – 1438).除VO₂(B)标准衍射峰外,没有检测到其 他杂峰,这表明该 VO₂(B)样品纯度较高.值得 注意的是,与 x = 1.00时所得样品的衍射峰相 比,其他样品的衍射峰强度明显变大,这说明浓 度较大的还原剂有利于样品结晶度的提高.

2.2 VO₂(B)样品的 SEM 分析

图 2 为不同草酸浓度下所得 VO₂(B)样品 的 SEM 图,插图为对应样品的高倍放大图.由 图 2 可以看出,不同草酸浓度下所得 VO₂(B) 样品呈现出不同程度的团聚现象,当 *x* = 2.50 时,VO₂(B)样品由于其纳米棒的尺寸较大且彼 此之间连接紧密,所形成的团聚更加严重.从高 倍放大图中可以看出,当 *x* = 1.75 时,VO₂(B) 样品呈不规则的纳米片状,且纳米片的面积较 小、尺寸分布不均匀;随着草酸浓度的增大(*x* = 2.00),VO₂(B)样品的纳米片面积逐渐增大, 且纳米片的四周不平整,表现为不规则形状;当 *x* = 2.50 时,VO₂(B)样品沿着其中一个特定方 向迅速长大,最终形成了表面光滑的纳米棒.这 表明草酸浓度对 VO₂(B)样品的形貌具有较大 影响,适当的草酸浓度可以生成面积较小的纳 米片,而当草酸浓度较大时,可以促进 VO₂(B) 样品由纳米片状定向生长为纳米棒状.

2.3 VO₂(B)样品的正电子寿命分析

对于不同草酸浓度下所制备的系列 VO₂(B)样品,使用 PATFIT 程序分解正电子寿

Fig. 1 XRD patterns of VO₂(B) obtained under different oxalic acid concentrations

命谱后得到两个寿命分量(已扣除源成分):短 寿命分量 τ_1 和长寿命分量 τ_2 ,其所对应的强度 分别为 I_1 和 I_2 . 长寿命分量 τ_2 是正电子在样品 表面被捕获后湮灭的结果,且其对应强度 I, 均 小于4%,因此在后续讨论中忽略长寿命分量 τ_2 . 不同草酸浓度下所得 VO₂(B)样品的正电 子短寿命分量 τ_1 及其强度 I_1 如图 3 所示. 由图 3可以看出, $VO_2(B)$ 样品的短寿命分量 τ_1 分布 在 3.20×10⁻¹⁰~3.50×10⁻¹⁰ s 之间,这可能是 正电子被十几个空位大小的微孔(纳米颗粒之 间的空间)捕获后的湮灭所致^[17].所有VO₂(B) 样品的强度 I,均达到 96% 以上,说明微孔为样 品中的主要结构缺陷.当x=1.00时,其短寿命 分量 τ_1 和相应的强度 I_1 均达到最大值,分别为 3.51×10⁻¹⁰ s 和 99%, 这表明与其他条件下的 VO₂(B)样品相比,该样品单位体积中的微孔尺 寸较大、数量较多;随着草酸浓度的增大, VO₂(B)样品的短寿命分量及其强度都明显减 小;当 x = 2.50 时, VO₂(B)样品的短寿命分量 及其强度都较小,这可能是由于分布均匀且表 面光滑的纳米棒之间的微孔尺寸较小、数量较 少. 该实验结果与 SEM 的表征结果一致.

2.4 VO₂(B)样品的电化学性能分析

图 4 为 VO₂(B)样品的 CV 曲线. 由图 4a) 可以看出,在从 0.2 V 到 0.6 V 的正向扫描过 程中,曲线出现一个氧化峰,表明 K⁺离子从

图 2 不同草酸浓度下所得 VO₂(B)样品的 SEM 图 Fig. 2 SEM images of VO₂(B) obtained under different oxalic acid concentrations

VO₂(B)样品中脱出;在反向扫描过程中,还原 峰对应 K⁺离子嵌入 VO₂(B) 样品中. 所有 VO₂(B)样品都只出现一对氧化还原峰,并且峰 的形状是对称的,这表明 VO₂(B)样品发生的 氧化还原反应过程是可逆的.由图4b)可以看 出,当x分别等于1.00,1.50,1.75,2.00时,4 个 VO₂(B)样品的氧化峰均出现在 0.47 附近; 当 x = 2.25 和 x = 2.50 时, VO₂(B)样品的氧化 峰出现在 0.53 附近,峰位明显偏大. 与其他 VO₂(B)样品相比, x = 1.75 时所得 VO₂(B)样 品的氧化还原峰处于更低电位,且具有较小的 电位差(0.111 V),这说明该电极中K⁺离子的 嵌入和脱嵌更容易,更有利于氧化还原反应的 发生;而当 x = 2.25 和 x = 2.50 时所得样品的 电位明显增大,这说明当x > 2.00时会抑制 K⁺ 离子与 VO₂(B) 样品的反应. 当 x = 1.75 时, 所 得样品表现出最大的电流响应且曲线包围面积 最大,根据CV曲线计算比电容值的公式如下:

$$C = \frac{\int_{V_1}^{V_2} I dV}{mv(V_2 - V_1)}$$

其中, $\int_{V_1}^{V_2} IdV$ 为 CV 曲线包围的面积/(AV), *m* 为负载电极的质量/g, *v* 为扫描速率/(V · s⁻¹), ($V_2 - V_1$)为电压窗口/V. 按照草酸浓度 逐渐增大的顺序, 由上式计算出的 VO₂(B)样 品的比电容值依次为 77.08 F/g, 83.62 F/g, 96.35 F/g, 88.4 F/g, 70.17 F/g, 75.65 F/g. 当 x = 1.75时, VO₂(B)样品具有最大的比电容 值^[18-19], 为 96.35 F/g.

由图 4c) 可以看出, 当 x = 1.75 时, 随着扫 描速率的增大,VO₂(B)样品的峰电流也逐渐增 大,氧化峰和还原峰的位置均发生了偏移且氧 化峰与还原峰的峰位差值增大.峰的偏移可能 是由于扫描速率变大时,其电阻增大,从而产生 了电压降;而峰位差值增大可能是由于扫描速 率的增大,加速了电极表面发生的氧化还原反 应,从而使电极极化^[16].从图 4c) 插图可以看 出,峰值电流与扫描速率的平方根呈线性关系, 这表明扩散是此反应过程的主要影响因素[21]. 为进一步测试 VO₂(B)样品的循环稳定性,将 x=1.75 时所得 VO₂(B)样品在 0.10 V/s 的扫 描速率下进行 100 次循环扫描实验,其 CV 曲 线如图 4d) 所示. 由图 4d) 可以看出, 经过 100 次扫描后,该 VO₂(B)样品的 CV 曲线形状没有 发生大的改变,100次循环曲线基本重合,这说 明VO₂(B)样品具有较好的可逆性和循环稳 定性.

图 5 为不同草酸浓度下所得 VO₂(B)样品 的恒流充放电曲线.由图 5a)可以看出,在电流 密度为 30 mA/g 的条件下,所有 VO₂(B)样品 均在 0.35 V 附近表现出明显的放电平台,且放 电平台的位置基本一致,这表明此时 K⁺离子, 嵌入到 VO₂(B)样品中,并将 V⁵⁺还原为 V⁴⁺. 对比 6 组 VO₂(B)样品可以发现,随着草酸浓 度的增大, $VO_2(B)$ 样品的放电时间呈先增加后 减少的趋势,其中,当x = 1.75时,所得样品的 放电时间最长,为440 s.根据恒流充放电曲线 计算比电容值的公式如下:

$C = I\Delta t/m\Delta U$

其中,*I*为充电放电电流/A,*t*为放电时间/s,*m* 为质量/g, ΔU 为电位差/V.按照草酸浓度逐渐 增大的顺序,由上式计算出的 VO₂(B)样品比 电容值依次为:64.80 F/g,63.12 F/g,105.00 F/g, 92.10 F/g,74.79 F/g,61.26 F/g,其中当 *x* = 1.75 时,所得 VO₂(B)样品具有最大的比电容 值,为105.00 F/g.该实验结果与循环伏安测试 结果一致.此时所得 VO₂(B)样品表现出较好 的放电容量,这可能与其较小的纳米片形貌有 关,尺寸较小的纳米片在与 K⁺离子发生氧化还 原反应时,其较大的比表面积可以提供更大的 反应场所,使 K⁺离子在材料内部的传输路程更 短^[22].当x = 1.75 时,所得 VO₂(B)样品在电流 密度分别为 30 mA/g,50 mA/g,100 mA/g, 300 mA/g,500 mA/g 时进行恒流充放电测试, 其放电曲线如图 5b)所示.当电流密度越大时, x = 1.75 时所得 VO₂(B)样品的放电时间越短, 比电容值越低.这可能是因为在较高的电流密 度下,电极表面吸附的电解质离子增多,电极极 化增大,从而激发电压增大,但是界面电荷数却 没有增加^[23].

图4 用不同草酸浓度下所得 VO2(B)样品的 CV 曲线

Fig. 4 CV curve of VO₂(B) samples under different oxalic acid concentrations

为了更直接地显示 VO₂(B)样品的导电性 和电阻特性,在0.01~10⁵ Hz 的频率范围内对 VO₂(B)样品进行电化学阻抗谱(EIS)测量.奈 奎斯特(Nyquist)曲线可以表现不同频率下样 品的阻力,它由两部分组成:高频区(代表电荷 的传输过程)的不规则半圆和低频区的直线 (代表电荷的扩散过程).图6为不同草酸浓度 下所得 VO₂(B)样品在 0.01~10⁵ Hz 频率下的 Nyquist 曲线,其中,插图 a) 为模拟阻抗谱的等 效电路图, R_s 代表电解质电阻, R_{et}代表电极与 电解质之间的电荷转移电阻,Cu代表电极表面 的双层电容, W 代表 Warburg 阻抗; 插图 b) 为 Nyquist 曲线在高频下的放大图. 由图 6 可以看 出,在较低的频率下,阻抗曲线的斜率较大, VO₂(B)样品的离子扩散阻力较小. 由图 6b)可 以看出,高频曲线与实轴相交,交点对应于等效 电路中的R,表示电解质与电极表面离子的欧 姆电阻和 Warburg 阻抗^[4]. 当 x 分别等于1.00, 1.50, 1.75, 2.00, 2.25, 2.50 时,所得VO₂(B) 样品的 R_s 电阻值分别为1.040 Ω , 0.757 Ω , $0.770 \Omega, 0.783 \Omega, 1.049 \Omega$ 和 0.808 $\Omega,$ 除 x = 1.00 和 x = 2.25 时所得 VO₂(B) 样品外,其他 样品都表现出较低的电阻.其中,x=1.75 时所 得 VO₂(B) 样品在低频的直线斜率较大, 与虚

图 6 不同草酸浓度下所得 VO₂(B)样品 在 0.01 ~ 10⁵ Hz 频率下的 Nyquist 曲线 Fig. 6 Nyquist curves of VO₂(B) samples with different oxalic acid concentrations at 0.01 ~ 10⁵ Hz

部轴更加平行,说明该样品的离子扩散具有较小的电荷转移电阻(R_{et})^[24],较小的欧姆电阻和电荷转移电阻使其在恒流充放电测试中表现较好^[25].

3 结论

本文以 V₂O₅ 为原料、草酸为还原剂,采用 水热法,通过改变草酸与 V₂O₅ 的浓度比 *x* (1.00 ≤*x*≤2.50)制备了系列纳米 VO₂(B)样 品,并研究了草酸浓度对纳米 VO₂(B)样品微 结构和电化学性能的影响,得出,草酸浓度对 VO₂(B)样品的微结构和电化学性能均具有较 大的影响,所得 VO₂(B)样品均为单斜结构的 纯相 VO₂(B),结构缺陷主要为微孔,具有较好 的可逆性和循环稳定性.其中,*x*=1.75 时所得 VO₂(B)样品的表面形貌为比表面积较大的纳 米片状结构,当电流密度为 30 mA 时,具有最 大的比电容值,为 105.00 F/g,表现出更好的电 化学性能.

由本文研究结果可知,通过改变还原剂草酸的浓度可以对纳米 VO₂(B)材料的电化学性能进行调控,这为揭示纳米 VO₂(B)材料的微观结构与电化学性能之间的关系提供了基础研究资料,有助于促进该类材料在电池正极材料方面的应用.

参考文献:

- LI M, LU J, CHEN Z, et al. 30 years of lithiumion batteries [J]. Advanced Materials, 2018, 30 (33): 1800561.
- [2] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3):587.
- [3] HUANG G, LI C, SUN X, et al. Fabrication of vanadium oxide with different valences of vanadium-embedded carbon fibers and their electro-chemical performance for supercapacitor [J]. New Journal of Chemistry, 2017, 41 (17) :8977.
- [4] MILOSEVIC S, STOJKOVIC I, MITRIC M, et al. High performance of solvothermally prepared VO₂(B) as anode for aqueous rechargeable lithium batteries[J]. Journal of the Serbian Chemical Society, 2015, 80(5):685.
- [5] 倪娟.B相VO₂纳米材料的水热法合成与电化学性能研究[D].上海:华东师范大学, 2011.

- [6] SONG H J, CHOI M, KIM J C, et al. Enhanced lithium storage in reduced graphene oxide supported M-phase vanadium (N) dioxide nanoparticles[J]. Scientific Reports, 2016, 6:30202.
- [7] XU F, CAO X, SHAO Z, et al. Highly enhanced thermochromic performance of VO₂ film using "movable" antireflective coatings [J]. ACS Appl Mater Interfaces, 2019, 11(5):4712.
- [8] ZHANG Y, JING X, CHENG Y, et al. Controlled synthesis of 3D porous VO₂ (B) hierarchical spheres with different interiors for energy storage
 [J]. Inorganic Chemistry Frontiers, 2018, 5 (11):2798.
- [9] BHUYAN P, D GUPTA S K, KUMAR A, et al. Highly infrared sensitive VO₂ nanowires for a nano-optical device [J]. Physical Chemistry Chemical Physics, 2018, 20(16):11109.
- [10] SASAKI T, UEDA H, KANKI T, et al. Electrochemical gating-induced reversible and drastic resistance switching in VO₂ nanowires [J]. Scientific Reports, 2015, 5:17080.
- [11] LIU Q, TAN G, WANG P, et al. Revealing mechanism responsible for structural reversibility of single-crystal VO₂ nanorods upon lithiation/delithiation [J]. Nano Energy, 2017, 36: 197.
- [12] WANG W, JIANG B, HU L, et al. Single crystalline VO₂ nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance [J]. Journal of Power Sources, 2014, 250:181.
- [13] ZOU Z. Hydrothermal synthesis of flower-like Fe-doped VO₂(B) with enhanced lithium ion storage performance[J]. International Journal of Electrochemical Science, 2018, 13(8):8127.
- [14] 桂阳海,孔华杰,刘贝贝,等.WO3 纳米棒/石墨烯复合材料的制备及其气敏性能研究[J]. 郑州轻工业学院学报(自然科学版),2015,30

(5/6):7.

- [15] MACKIE R A, SINGH S, LAVEROCK J, et al. Vacancy defect positron lifetimes in strontium titanate[J]. Physical Review B, 2009, 79(1): 014102.
- [16] DAI H, XIE X, CHEN Z, et al. Microstructure evolution and magnetic properties of Eu doped CuFeO₂ multiferroic ceramics studied by positron annihilation [J]. Ceramics International, 2018,44(12):13894.
- [17] 章婷,邱诚,张宏俊,等.纳米 Cu 固体材料微 结构的正电子湮没研究[J].武汉大学学报 (理学版),2010,56(6):627.
- [18] LI Z, ZHANG W, LI Y, et al. Activated pyrene decorated graphene with enhanced performance for electrochemical energy storage[J]. Chemical Engineering Journal, 2018, 334:845.
- [19] AZIZ S B, HAMSAN M H, ABDULLAH R M, et al. A promising polymer blend electrolytes based on chitosan: Methyl cellulose for EDLC application with high specific capacitance and energy density[J]. Molecules, 2019, 24:2503.
- [20] QIN M, LIANG Q, PAN A, et al. Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion bat-

teries[J]. Journal of Power Sources, 2014, 268: 700.

- [21] LI J, WANG L, YOU W, et al. Catalytic effects of [Ag (H₂O) (H₃PW₁₁ O₃₉)]³⁻ on a TiO₂ anode for water oxidation[J]. Chinese Journal of Catalysis, 2018, 39:534.
- [22] HAN S,ZOU Z,HUO S. Hydrothermal synthesis of Mn-doped VO₂ (B) as cathode material for lithium-ion battery [J]. IOP Conference Series: Materials Science and Engineering, 2018, 382: 022059.
- [23] MAI L, WEI Q, AN Q, et al. Nanoscroll buffered hybrid nanostructural VO₂ (B) cathodes for high-rate and long-life lithium storage [J]. Adv Mater, 2013, 25(21):2969.
- [24] ENCINAS-SÁNCHEZ V, DE MIGUEL M T, LASANTA M I, et al. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Solar Energy Materials and Solar Cells, 2019, 191: 157.
- [25] 方华,张振华,常鑫波,等.分级多孔石墨烯/ 活性炭复合材料的制备及其电化学电容性能 分析[J].轻工学报,2018,33(5):77.