

张晓霞,陈胜玲,朱枝群,等.代谢工程改造枯草芽孢杆菌促进 L-赖氨酸高效合成研究[J].轻工学报,2022, 37(5):1-11.

ZHANG X X, CHEN S L, ZHU Z Q, et al. Metabolic engineering for improving the L-lysine production by *Bacillus* subtilis [J]. Journal of Light Industry, 2022, 37(5):1–11. DOI:10.12187/2022.05.001

代谢工程改造枯草芽孢杆菌促进 L-赖氨酸 高效合成研究

张晓霞1,陈胜玲2,朱枝群1,康春涛1,徐建中2

1. 江苏星海生物科技有限公司, 江苏盐城 224233;

2. 江南大学 生物工程学院/工业生物技术教育部重点实验室, 江苏 无锡 214122

摘要:为了构建具有益生功能和 L-赖氨酸合成功能的"双功能"枯草芽孢杆菌(Bacillus subtilis)重组菌株, 对饲料工业常用的益生菌B. subtilis ACCC11025 进行系统的代谢工程改造。结果表明:以来源于谷氨酸棒杆 菌(Corynebacterium glutamicum)的 lysC³¹¹、zuf²³⁴ 和 gnd³⁶¹ 替换B. subtilis 中的 thrD、zwf 和 gnd,即构建重组菌 B. subtilis XH4,有利于 L-赖氨酸的合成,其产量达到(20.3±1.9) g/L;将B. subtilis 中 hom 替换成来源于 C. glutamicum 的 hom⁵⁹,即构建重组菌 B. subtilis XH5,可显著降低副产物积累量,提高 L-赖氨酸产量至 (23.2±1.7) g/L,且不影响菌体生长;在重组菌 B. subtilis XH5 中引入 C. glutamicum 中的 DapDH 会改变二 氨基庚二酸途径(DAP)碳分布进而促进 L-赖氨酸的合成,目标重组菌B. subtilis XH6 的 L-赖氨酸产量达到 (25.6±2.3) g/L。

关键词:枯草芽孢杆菌;L-赖氨酸合成;CRISPR-Cas9;反馈调节;代谢工程 中图分类号:TS264 文献标识码:A 文章编号:2096-1553(2022)05-0001-11

0 引言

L-赖氨酸是八大必需氨基酸之一,动物和人自 身均无法合成。L-赖氨酸广泛应用于动物饲料中, 可平衡饲料中氨基酸的组成,提高动物对氨基酸的 摄取和代谢,促进家畜、家禽、鱼类等的生长发育,进 而提高饲料蛋白质的利用率,节约生产成本,减少环 境污染。谷类赖氨酸在加工过程中极易被破坏,致 使饲料中的 L-赖氨酸得率极低,故 L-赖氨酸被称 为第一限制性氨基酸^[1]。目前,全球 L-赖氨酸年产 量估计为 2.2×10⁶ t,并以每年 10% 左右的速度增 长,在世界范围内是除 L-谷氨酸之外的第二大氨基 酸^[2]。目前,工业上用于发酵生产 L-赖氨酸的菌种 主要有大肠杆菌(*Escherichia coli*)和谷氨酸棒杆菌 (*Corynebacterium glutamicum*)。然而,将 *E. coli*和 *C. glutamicum* 直接应用于动物饲料存在含内毒素、 适口性差等缺陷。自 2013 年起,国家规定的饲料添 加剂目录里已明文规定饲料级 L-赖氨酸中不得含 有 *E. coli*,而市场上主要 L-赖氨酸产品中 L-赖氨酸 的纯度一般为 65%或 70%^[3]。因此,亟需开发具有 食品安全性的微生物底盘细胞用于发酵生产饲用 L-赖氨酸。

收稿日期:2022-02-13

基金项目:苏北科技专项-先导性项目(SZ-YC202105)

作者简介:张晓霞(1980—),女,江苏省东台市人,江苏星海生物科技有限公司工程师,主要研究方向为发酵工程。E-mail: aixuexi_2016@163.com

通信作者:徐建中(1984—),男,江西省高安市人,江南大学副教授,博士,主要研究方向为发酵工程。E-mail:xujianzhong@jiangnan.edu.cn

益生菌因其绿色、无残留、无污染的特性成为替 代抗生素的最佳选择之一,受到国内外学者和饲料 生产企业的广泛关注^[4]。枯草芽孢杆菌(Bacillus subtilis)是芽孢杆菌属的一种,已被美国食品药品监 督管理局(FDA)、美国饲料管制协会(AAFCO)和我 国农业部认定为饲料安全性菌株,广泛应用于饲料 生产中^[5]。B. subtilis 产生的枯草菌素、多黏菌素、 制霉菌素、短杆菌肽等活性物质对致病菌或易造成 内源性感染的条件致病菌具有明显抑制作用^[6]。 同时, B. subtilis 合成的消化性酶类(蛋白酶、淀粉 酶、脂肪酶、纤维素酶、果胶酶等)可降解饲料中的 复杂碳水化合物,提高饲料消化率,提升动物生长性 能^[7]。此外, B. subtilis 能刺激动物免疫器官的生长 发育,激活 T 淋巴细胞和 B 淋巴细胞,提高免疫球 蛋白和抗体水平,增强细胞免疫和体液免疫功能,提 高群体免疫力^[8]。有研究^[9]表明, B. subtilis 可使生 猪日增重提高6%~7%,饲料转化率提高3%~4%, 也能提高肉鸡的抗氧化能力,进而提高肉鸡生长性 能。此外,为了有效提高饲料中营养物质的利用率, 通过紫外诱变或其他代谢方法改造B. subtilis,选育 具有高产消化性酶类的突变菌株已成为B. subtilis 发酵饲料的发展趋势^[10]。虽然B. subtilis 作为益生 菌广泛用于饲料生产,但该菌株不能有效积累 L-赖 氨酸^[11],为了同时满足家畜或家禽对 L-赖氨酸和 B. subtilis 的需求,需要在饲料中同时添加上述两种 物质,这不仅造成饲料生产工艺复杂化,还在一定程 度上增加了企业生产成本。因此,实现B. subtilis 高 效合成 L-赖氨酸有利于简化饲料生产工艺,降低生 产成本,提高企业的行业竞争力。

随着B. subtilis 基因组注释的解析, B. subtilis 发 酵生产 L-赖氨酸的生物合成途径和调节机制已较 清晰。当以葡萄糖为原料时, B. subtilis 有 5 个途径 参与 L-赖氨酸合成, 分别是糖酵解途径、磷酸戊糖 (PP)途径、三羧酸(TCA)循环、CO₂ 固定反应和 L-赖氨酸终端合成途径。现阶段, 针对 E. coli 和 C. glutamicum 的代谢工程改造合成 L-赖氨酸已有 较多报道^[12-14], 主要集中在以下几个方面:1)解除 合成途径中的反馈调节,提高 L-赖氨酸合成途径的 效率:2)阻断副产物的支路代谢途径, 促进多代谢 流进入 L-赖氨酸合成途径;3)强化合成途径关键酶 的表达水平,提高 L-赖氨酸前体物的供应;4) 拓宽 菌株代谢底物谱,降低 L-赖氨酸的生产成本;5) 提 高胞内还原型烟酰胺腺嘌呤二核苷酸磷酸(NAD-PH)的有效供应水平,促进 L-赖氨酸高效合成。然 而,针对B. subtilis 的代谢工程改造合成 L-赖氨酸却 鲜有报道。

基于此,本研究拟以饲料工业中常用的益生菌 B. subtilis ACCC11025 为出发菌株,采用 CRISPR-Cas9 基因编辑技术对磷酸戊糖途径、L-赖氨酸终端 合成途径和 L-赖氨酸竞争支路代谢途径进行重构, 以期获得具有益生功能和 L-赖氨酸高效合成功能 的"双功能"枯草芽孢杆菌重组菌株,为利用 B. subtilis 生产 L-赖氨酸等饲用氨基酸提供参考。

1 材料与方法

1.1 主要试剂与设备

主要试剂:胰蛋白胨、酵母提取物,英国 Oxoid 公司产;质粒提取试剂盒、PCR 产物纯化试剂盒、 DNA 聚合酶、DL1000 DNA Marker、甘露糖、氨苄青 霉素(Amp)、卡那霉素(Kan),南京诺唯赞生物科 技有限公司产;限制性内切酶、DNA 连接酶,日本 TAKARA 公司产;葡萄糖、(NH₄)₂SO₄、KH₂PO₄等 常规化学试剂,均为分析纯,国药集团化学试剂有限 公司产。

主要设备: DNA Engine 型 PCR 仪、Biophotometer 型核酸/蛋白电泳仪、Gel DOC GR⁺型凝胶成像 仪、Micro Pulser 型电穿孔仪,美国 Bio-Rad 公司产; BioPhotometer plus 型核酸蛋白测定仪,德国 Eppendorf 公司产; Autotune 超声波细胞破碎仪,美国 Sonics 公司产; Allegra X – 15R 型冷冻离心机,美国 Beckman Coulter 公司产; SBA40-E 型生物传感分析 仪,山东省科学院产。

1.2 菌株、质粒和引物序列

实验用主要菌株和质粒见表1,引物序列见表2。

1.3 培养条件与培养基

于 37 ℃、100 r/min 条件下培养B. subtilis 及其重 组菌株。在特定条件下,添加质量浓度为 100 μg/mL 的 Amp 或质量浓度为 50 μg/mL 的 Kan,用于筛选

	10	able 1 The main strains and plasmus used in experiments	
种类	编号	特征	来源
	XH0	饲料安全性菌株,由中国农业科学院土壤肥料研究所分离得到,即 ACCC11025	ACCC
	XH1	XH0 中 thrD 替换成来源于C. glutamicum 中解除反馈调节的 lysC ³¹¹	本研究构建
	XH2	XH1 中 zwf 替换成来源于C. glutamicum 中解除反馈调节的 zwf ²³⁴	本研究构建
B. subtilis 菌株	XH3	XH1 中 gnd 替换成来源于C. glutamicum 中解除反馈调节的 gnd ³⁶¹	本研究构建
PH //	XH4	XH2 中 gnd 替换成来源于C. glutamicum 中解除反馈调节的 gnd ³⁶¹	本研究构建
	XH5	XH4 中 hom 替换成来源于C. glutamicum 中解除反馈调节的 hom ⁵⁹	本研究构建
	XH6	在 XH5 基因组中引入来源于C. glutamicum 中的 ddh	本研究构建
	pHT01	枯草芽孢杆菌内源表达质粒,Amp ^R	实验室保存
	pBE980b	芽孢杆菌-大肠杆菌穿梭表达质粒,Kan ^R	实验室保存
	pHT01-Cas9	用于在B. subtilis 中过表达 Cas9 的重组质粒	本研究构建
氏約	pBE980b-hom ⁵⁹	携带基因 hom 的 sgRNA 及同源臂	本研究构建
灰桠	pBE980b- <i>lysC</i> ³¹¹	携带基因 lysC 的 sgRNA 及同源臂	本研究构建
	pBE980b- <i>zwf</i> ²³⁴	携带基因 zuf 的 sgRNA 及同源臂	本研究构建
	pBE980b- gnd ³⁶¹	携带基因 gnd 的 sgRNA 及同源臂	本研究构建
	$\mathrm{pBE980b}\text{-}ddh$	携带基因 pksD 的 sgRNA 及同源臂	本研究构建

表1 实验用主要菌株和质粒 Table 1 The main strains and plasmids used in experiments

E. coli 和 B. subtilis 重组菌株。

LB 培养基:蛋白胨 10 g/L,酵母提取物 5 g/L, NaCl 10 g/L,pH 值 7.0。

SP I 培养基(20 mL):9.8 mL SP I -A 盐溶液 (即 Na₃C₆H₅O₇·2H₂O 2 g/L,(NH₄)₂SO₄ 4 g/L, K₂HPO₄·3H₂O 28 g/L,KH₂PO₄ 12 g/L,0.1 MPa 灭 菌 20 min);9.8 mL SP I -B 溶液(即 MgSO₄·7H₂O 0.4 g/L,0.1 MPa 灭菌 20 min);200 μL 100×CAYE 溶液(即 酪 蛋 白 水 解 物 20 g/L,酵 母 提 取 物 100 g/L,0.1 MPa 灭菌 20 min);200 μL 葡萄糖溶液 (500 g/L)。

SP II 培养基(6 mL):5.88 mL SP I 培养基, 60 μL CaCl₂ 溶液(50 mmol/L),60 μL MgCl₂ 溶液 (250 mmol/L)。

发酵培养基:葡萄糖 80 g/L, 玉米浆 35 g/L, 甜 菜糖蜜 12 g/L, (NH₄)₂SO₄ 36 g/L, MgSO₄·7H₂O 1.5 g/L, K₂HPO₄ 1 g/L, KH₂PO₄ 1 g/L, FeSO₄ 0.02 g/L, MnSO₄ 0.02 g/L, 甜菜碱 0.05 g/L, 烟酰 胺 0.008 g/L, 硫 胺素 0.000 45 g/L, 生物素 0.000 85 g/L, CaCO₃ 40 g/L。

所有培养基均用质量浓度为 0.2 g/mL 的 NaOH 溶液调节 pH 值至 7.0~7.2,并于 121 ℃灭菌 20 min,发酵培养基于 115 ℃灭菌 10 min。

1.4 质粒和菌株的构建方法

1.4.1 质粒 pHT01-Cas9 的构建 以酿脓链球菌的

基因组作为模板,使用引物 Spcas9-F 和 Spcas9-R 将 基因 Spcas9 进行 PCR 扩增,随后利用限制性内切酶 Xba I 和 Xam I 对质粒 pHT01 和片段 Spcas9 进行双 酶切并酶连,获得目标重组质粒 pHT01-Cas9。

1.4.2 质粒 pBE980b-hom⁵⁹、 pBE980b-lysC³¹¹、 pBE980b-zwf²³⁴、pBE980b-gnd³⁶¹ 和 pBE980b-ddh 的 构建 以质粒 pBE980b 为模板,利用引物 hom-F、 hom-R、lysC-F、lysC-R、zwf-F、zwf-R、gnd-F、gnd-R、 pksD-F 和 pksD-R 通过反向 PCR 扩增将 20 bp 的 sgRNA 无缝连接到质粒 pBE980b,获得 5 个带有靶 向位点的质粒。

以 B. subtilis ACCC11025 基因组为模板,利用引物 hom-L-F、hom-L-R、hom-R-F、hom-R-R、lysC-L-F、 lysC-L-R、lysC-R-F、lysC-R-R、zwf-L-F、zwf-L-R、zwf-R-F、zwf-R-R、gnd-L-F、gnd-L-R、gnd-R-F、gnd-R-R、 pksD-L-F、pksD-L-R、pksD-R-F和 pksD-R-R 分别对基因 hom、lysC、zwf、gnd 和 pksD 的上下同源臂进行扩 增,同时以 C. glutamicum 为基因组,利用引物 Cghom-F、Cghom-R、CglysC-F、CglysC-R、Cgzwf-F、 Cgzwf-R、Cggnd-F、Cggnd-R、Cgddh-F和 Cgddh-R 分 别扩增基因 hom、lysC、zwf、gnd 和 ddh。将回收后的 同源臂片段和基因片段同时作为模板,通过融合 PCR 进行基因融合,利用限制性核酸内切酶对融合 片段及带有靶向位点的质粒 pBE980b 进行酶切和酶 连,获得重组质粒 pBE980b-hom⁵⁹、pBE980b-lysC³¹¹、

Table 2 The pimer pairs used in experiments					
引物	序列(5'→3')	内切酶	特征		
Spcas9-F	GC <u>TCTAGA</u> ATGGATAAGAAATACTCAAT	Xba I	接回 Cas9 基因		
Spcas9-R	CCC <u>CCCGGG</u> TCAGTCACCTCCTAGCTGA	Xma I	15 火 0039 坐西		
hom-F	GATAAGCTTATGCATCAGGTCGGGTTTTAGAGCTAGAAATAGCAAGTTA		脚标 hom 基因		
hom-R	CCGACCTGATGCATAAGCTTATCGGTACCGCTATCACTTTATATTTTACAT		电你 #07# 圣西		
lysC-F	${\tt CCGTTATAAAGGCGTCAAAGCGGGTTTTAGAGCTAGAAATAGCAAGTTAAA}$		 御标 №C 其因		
lysC-R	CCGCTTTGACGCCTTTATAACGGGGTACCGCTATCACTTTATATTTTACAT		书研 <i>1980</i> 圣西		
zwf-F	CCGGTTCTGATGTAGAATGGAACGTTTTAGAGCTAGAAATAGCAAGTTAAA		御标 (其田		
zwf-R	GTTCCATTCTACATCAGAACCGGGGGTACCGCTATCACTTTATATTTTACAT		和你如何坐凶		
gnd-F	ATTACGACGGCTACCGCACAGGGGTTTTAGAGCTAGAAATAGCAAGTTAAA		 脚标 and 其因		
gnd-R	CCCTGTGCGGTAGCCGTCGTAATGGTACCGCTATCACTTTATATTTTACAT		和你 gnu 圣西		
pksD-F	GGTTCCCAATACTATCACATGGGGTTTTAGAGCTAGAAATAGCAAGTTAAA		 脚标 nkeD 其因		
<i>pksD</i> -R	CCCATGTGATAGTATTGGGAACCGGTACCGCTATCACTTTATATTTTACAT		毛小 phot 圣凶		
hom-L-F	CGG <u>GGTACC</u> CATTGATCAGGATTCCGGCG	Kpn I			
hom-L-R	AGATGCTGAGGTCATAAAAACTCCACC				
Cghom-F	ATGACCTCAGCATCTGCCCC		将B. subtilis 中的 hom 替换成		
Cghom-R	TTAGTCCCTTTCGAGGCGG		C. gluramicum 中的 hom ⁵⁹		
hom-R-F	CTCGAAAGGGACTAATGTGGAAAGGACTTATC				
hom-R-R	CCG <u>GTCGAC</u> AAGCTTTTGGCCTTCAATGC	Acc I			
thrD-L-F	CGG <u>GGTACC</u> ATCAATCGCGGCAAACGG	Kpn I			
thrD-L-R	TACGACCAGGGCCACGTTTACATCTCC	_			
CglysC-F	GTGGCCCTGGTCGTACAGAA	_	将B. subtilis 中的 thrD 替换成		
CglysC-R	TTAGCGTCCGGTGCCTGCAT	_	C. gluramicum 中的 lysC ³¹¹		
thrD-R-F	AGGCACCGGACGCTAATCGTACATAAATAGC	_			
<i>thrD</i> -R-R	CCG <u>GTCGAC</u> CCGCAAGACATAGTCTTGC	Acc I			
zwf-L-F	CGG <u>GGTACC</u> CCCTTTAGGTCCGTACAC	Kpn I			
zwf-L-R	CGTGTTTGTGCTCACTAAAAGTACCTCA	_			
Cgzwf-F	GTGAGCACAAACACGACC		将B. subtilis 中的 zwf 替换成 C. gluramicum 中的 zwf ²³⁴		
Cgzwf-R	TTATGGCCTGCGCCAGGTG				
zwf-R-F	TGGCGCAGGCCATAATAAGAAGAAAAAAAGCC				
zwf-R-R	GGCATGCTGAAATATGGTGAAATC	Sph I			
pksD-L-F	CCGGAATTCGGCCATATGGAGTTTGAGGAG	EcoR I			
pksD-L-R	GCGGATGTTGGTCATGTGTATAACCTTCTTT				
Cgddh-F	ATGACCAACATCCGCGTAGC		将B. subtilis 中的 pskD 替换成		
Cgddh-R	TTAGACGTCGCGTGCGATCAGAT		C. gluramicum 中的 ddh		
pksD-R-F	CACGCGACGTCTAATTACATATGTCTTTC				
pksD-R-R	CGGGGTACCCCTGTTTGGCTTCATTCAT	Kpn I			
gnd-L-F	CCGGAATTCAGTCAAAACCGTGATGGAT	EcoR I			
gnd-L-R	CGTACTTGACGGCATGTGTTACAGCTCCT				
- Cggnd-F	ATGCCGTCAAGTACGATCAAT	_	將B. subtilis 中的 ond 替换成		
Cggnd-R	TTAAGCTTCAACCTCGGAGC	TTAAGCTTCAACCTCGGAGC — <i>C. gluramicum</i> 中的 gru GAGGTTGAAGCTTAACCTGTATTAAAAA —			
gnd-R-F	GAGGTTGAAGCTTAACCTGTATTAAAAA				
gnd-R-R	CGG <u>GGTACC</u> TGTCAAGCCATAACCTACTTT	Kpn I			

表 2 实验用引物序列 Table 2 The pimer pairs used in experiments

注:带下划线的碱基序列为限制性内切酶位点;—表示无内切酶。

pBE980b-zwf²³⁴、pBE980b-gnd³⁶¹和 pBE980b-ddh。 **1.4.3** B. subtilis **重组菌株的构建** 将重组质粒 pHT01-Cas9 电转化至B. subtilis ACCC11025 感受态 细胞中,通过氨苄抗性筛选得到带有 *Cas*9 蛋白的转 化子。将重组质粒 pBE980b-*hom*⁵⁹、pBE980b-*lysC*³¹¹、 pBE980b-*zuf*²³⁴、pBE980b-*gnd*³⁶¹ 和 pBE980b-*ddh* 分别 电转化至带有 Cas9 蛋白的B. subtilis ACCC11025 感 受态细胞中。目标重组菌株的具体筛选和鉴定参照 A. J. Sachla 等^[15]的方法进行。

1.5 分析方法

1.5.1 酶活性测定 采用超声波细胞破碎法处理 细胞,离心后取上清液,获得粗酶液^[16],将该粗酶液 保存于-20℃备用或立即用于酶活性的测定。参照 J.Z.Xu 等^[17]的方法测定葡萄糖-6-磷酸脱氢酶 (G6PD)、6-磷酸葡萄糖酸脱氢酶(6GPD)和二氨基 庚二酸脱氢酶(DapDH)的酶活性;参照许金坤等^[18] 的方法,采用吸光光度法测定高丝氨酸脱氢酶 (HSD)的酶活性。

1.5.2 菌体生长情况测定参照 J. Z. Xu 等^[17]的 方法,每间隔 2 h 或 4 h 取 200 μL 发酵液,用 0.25 mol/L 的稀 HCl 溶液将其稀释到 5 mL,用紫外 分光光度计于 562 nm 处测定吸光度(即 *OD*₅₆₂)。

1.5.3 葡萄糖含量和 L-赖氨酸产量测定 参照 J. Z. Xu 等^[17]的方法,将发酵液于4℃、12 000 r/min 条件下离心5 min,取上清液稀释 100 倍后,通过生 物传感分析仪测定发酵液中葡萄糖含量和 L-赖氨 酸产量。

1.6 数据处理

采用3次独立重复实验考查实验因素,数据表示为(平均值±标准差),统计学分析采用T检验。

2 结果与分析

2.1 目标重组菌株的筛选与鉴定结果分析

目标重组质粒和目标重组菌株的验证如图 1 所示,图 1a)中,泳道 1 为 pBE980b-*gnd*³⁶¹ 双酶切验证,泳道 2 为 pBE980b-*lysC*³¹¹ 双酶切验证,泳道 3 为 pBE980b-*zwf*²³⁴ 双酶切验证,泳道 4 为 pBE980b-

a)目标重组质粒验证

*hom*⁵⁹ 双酶切验证,泳道 5 为 pBE980b-*ddh* 双酶切验 证,泳道 M 为 DL10000 DNA Marker;图 1b)中,泳道 1 为*B. subtilis* ACCC11025 对照,泳道 2 为菌株 XH3 中基因 *gnd* PCR 验证,泳道 3 为菌株 XH4 中基因 *gnd* PCR 验证,泳道 4 为菌株 XH2 中基因 *zwf* PCR 验证,泳道 5 为菌株 XH6 中基因 *ddh* PCR 验证,泳 道 6 为菌株 XH1 中基因 *lysC* PCR 验证,泳道 7 为菌 株 XH5 中基因 *hom* PCR 验证,泳道 M 为 DL10000 DNA Marker。由图 1a)可知,所选择的质粒都带有 目标片段,为目标重组质粒 pBE980b-*gnd*³⁶¹、 pBE980b-*lysC*³¹¹、pBE980b-*zwf*²³⁴、pBE980b-*hom*⁵⁹ 和 pBE980b-*ddh*。由图 1b)可知,通过对候选目标菌株 进行目标片段 PCR 验证,确定了目标重组菌株 XH1、XH2、XH3、XH4、XH5 和 XH6。

2.2 天冬氨酸激酶对 L-赖氨酸终端合成途径 碳通量的影响分析

天冬氨酸激酶(Aspartokinase,AK)是催化 L-天 冬氨酸形成天冬氨酸磷酸的酶,是天冬氨酸族氨基 酸生物合成途径中的关键酶,也是 L-赖氨酸生物合 成过程中的第一个限速酶^[3]。然而,在B. subtilis 中,AK 只有一个同功酶天冬氨酸激酶(AKⅢ),由 基因 thrD 编码,其酶活力受 L-赖氨酸和 L-缬氨酸 的协同反馈抑制和阻遏作用^[19]。有研究^[17]表明,将 来源于 C. glutamicum 的 AKⅢ氨基酸序列中的第 311 位氨基酸由苏氨酸定点突变成异亮氨酸,可以解除 L-赖氨酸的反馈抑制作用。为此,本研究首次将 B. subtilis 中的 AKⅢ替换成来源于 C. glutamicum 的 已解除反馈调节作用的 AKⅢ(编码基因 lysC³¹¹),以 调节 L-赖氨酸终端合成途径的碳通量。lysC 基因 替换及替换后重组菌株的生长情况如图 2 所示。由 图 2a)可知,目标重组菌株 B. subtilis XH1 已成功

b)目标重组菌株验证

· 5 ·

图 1 目标重组质粒和目标重组菌株的验证 Fig. 1 Confirmation of target plasmids and recombinant strains 将自身 AK Ⅲ编码基因 thrD 替换成 C. glutamicum 中 的 $lysC^{311}$ 。重组菌株 B. subtilis XH1(XH0 thrD:: $lysC^{311}$)可在添加有 L-赖氨酸结构类似物 S-(2-氨 基乙基)-L-半胱氨酸(AEC)的 LB 固体培养基中 正常生长,而出发菌株 B. subtilis XH0 则不能生长 (图 2b))。这表明,将B. subtilis 中的 thrD 基因替换 成 $lysC^{311}$ 基因成功解除了 L-赖氨酸对 AK Ⅲ 的反馈 调节作用。

课题组前期研究^[17]发现,解除 C. glutamicum 中 AKⅢ的反馈调节作用有利于强化 L--赖氨酸终端 合成途径碳通量,从而促进 L--赖氨酸合成。为了考 查来源于 C. glutamicum 中解除反馈调节作用的 AKⅢ是否能在B. subtilis 中表达,本研究对出发菌株 和重组菌株进行摇瓶发酵并测定胞外 L--赖氨酸产 量。不同菌株 L--赖氨酸产量和菌体生长情况如图 3 所示。由图 3a)可知,重组菌株B. subtilis XH1 在 发酵 16 h 后开始逐渐向胞外分泌 L--赖氨酸,发酵 结束后(发酵 40 h)胞外 L--赖氨酸产量为(11.7± 0.6)g/L。相反,出发菌株B. subtilis XH0 在整个发 酵周期内都没有明显积累 L-赖氨酸的现象。由图 3b)可知,与出发菌株B. subtilis XH0 相比,重组菌株 B. subtilis XH1 的菌体生长并未受到明显抑制,最终 菌体量($OD_{562} = 38.4 \pm 3.5$)为出发菌株($OD_{562} =$ 37.5±4.1)的 97.6%。这表明,将B. subtilis 中的 AKⅢ替换成来源于 C. glutamicum 的解除反馈调节 的 AKⅢ可以实现改造 B. subtilis 以促进 L-赖氨酸 合成的目的。相似的结果也被魏佳等^[20]报道,他们 发现,将来源于 C. glutamicum 的解除反馈调节作用 的 AKⅢ替换 E. coli 中的 AKⅢ,有利于 L-苏氨酸的 合成。

2.3 G6PD 和 6GPD 对 PP 途径碳通量的影响 分析

以葡萄糖为碳源时B. subtilis 中 L-赖氨酸的生物合成途径如图 4 所示,其中,每合成 1 分子的 L-赖氨酸需要消耗 4 分子的辅酶因子 NADPH;不同颜 色的线条表示不同的合成途径,红色线条表示引入 外源合成途径;椭圆圈里是编码基因,红色圈表示替 代基因;⇒表示基因替换;基因 zuf 编码 G6PD,基

图 3 不同菌株 L-赖氨酸产量和菌体生长情况 Fig. 3 L-lysine production and cell growth of different strains

因 gnd 编码 6GPD. 基因 lvsC 编码 AKⅢ, 基因 hom 编码 HSD,基因 ddh 编码 DapDH。对胞内 NADPH 水平的调控已成为当前菌种改造和发酵过程优化的 热点之一。诸多文献^[1,3,14]指出,胞内 NADPH 供给 主要来源于 PP 途径中的 G6PD 和 6GPD。有文 献^[21]报道,失活的 PDHC 有利于支链氨基酸中 L-缬氨酸的合成,其原因是可以提高胞内丙酮酸的 供应。然而,G6PD 和 6GPD 的酶活性受到 NADPH、 ATP、果糖-1,6-二磷酸、甘油醛-3-磷酸、核酮糖-5-磷酸、赤藓糖-4-磷酸等的反馈调节,从而影响 PP 途径碳通量和 NADPH 供给^[22]。为了强化 PP 途径 碳通量,提高 L-赖氨酸合成所必需的 NADPH 供给 量,本研究选择来源于 C. glutamicum 的解除反馈调 节作用的 G6PD(编码基因 zwf²³⁴)和 6GPD(编码基 因 gnd³⁶¹) 替换菌株 B. subtilis XH1 中的野生型 G6PD(编码基因 zwf)和 6GPD(编码基因 gnd),分

別获得重组菌株*B. subtilis* XH2(XH1 *zwf*::*zwf*²³⁴)、 *B. subtilis* XH3(XH1 *gnd*::*gnd*³⁶¹)和*B. subtilis* XH4 (XH1 *zwf*::*zwf*²³⁴ *gnd*::*gnd*³⁶¹)。不同重组菌株中 G6PD和6GPD的酶学性质见表3。由表3可知,与 出发菌株相比,重组菌株XH2和XH4中的66PD 及重组菌株XH3和XH4中的6GPD对葡萄糖-6-磷酸(G6P)和NADP⁺的亲和力都提高了。这表明, 通过替换来源于*C. glutamicum*的解除反馈调节作 用的G6PD和6GPD和6GPD的反馈调节作用,进而 影响胞内G6PD和6GPD的题活力。

G6PD 和 6GPD 是细胞内 NADPH 再生的关键 酶^[1,3,14], 而胞内 NADPH 水平又显著影响 L-赖氨 酸的合成(图 4)^[1,3]。不同菌株胞内 NADPH 水平、 L-赖氨酸产量和菌体生长情况如图 5 所示。由图 5 可知,由于不同重组菌株胞内的 G6PD 和 6GPD 酶

图 4 以葡萄糖为碳源时B. subtilis 中 L-赖氨酸的生物合成途径 Fig. 4 The biosynthetic pathway of L-lysine from glucose in B. subtilis

	Table 3 Kinetic chara	cterization of G6PD an	d 6GPD in different str	ains µmol/L
菌株	$K_{\rm m}(mG6PD)_{ mG6P}$	$K_{\rm m}(m G6PD)_{ m NADP}$	$K_{\rm m}(6 { m GPD})_{ m G6P}$	$K_{\rm m}(6 { m GPD})_{ m NADP}$
XH0	332. 6±36. 3	78.4±5.8	343.6±23.2	84. 9±2. 7
XH1	327.2±21.6	77.1±7.5	336. 5±31. 7	83. 4±6. 1
XH2	214. 8±17. 4	54.3±3.6	ND^{a}	ND^{a}
XH3	ND^{a}	ND^{a}	225.2±13.2	56. 4±3. 4
XH4	225. 0±27. 5	43.8±5.2	213.7±29.3	59. 2±3. 8

表3 不同重组菌株中 G6PD 和 6GPD 的酶学性质

图5 不同菌株胞内 NADPH 水平、L-赖氨酸产量和菌体生长情况

Fig. 5 Intracellular NADPH level, L-lysine production and cell growth of different strains

活性不同,菌体胞内的 NADPH 水平也不同。胞内 G6PD 和 6GPD 酶活力越高, 胞内 NADPH 水平也越 高。由图 5a) 可知, 重组菌株 B. subtilis XH4 胞内 NADPH水平最高,从出发菌株B. subtilis XH1的 (3.51×10⁻⁴) nmol/(10⁴细胞) 增加到(5.38× 10⁻⁴) nmol/(10⁴细胞), 胞内 NADPH/NADP⁺提高了 43.2%。由图 5b) 可知, 重组菌株 B. subtilis XH2、 B. subtilis XH3 和 B. subtilis XH4 胞外 L-赖氨酸产 量都显著提升。重组菌株 B. subtilis XH4 摇瓶发酵 40 h 后积累了(20.3±1.9) g/L L-赖氨酸,比出发 菌株 B. subtilis XH1 提高了 73.5%。这些结果表明, 引入外源的解除反馈调节的 G6PD 和 6GPD 可以强 化 PP 途径碳通量,从而有效提高胞内 NADPH 供给 水平,促进 L-赖氨酸的合成。诸多研究^[1,3,14,22]也 指出,强化 E. coli 或 C. glutamicum 中 PP 途径碳通 量,可以提高胞内 NADPH 水平,从而提高 NADPH 依赖型产物的合成效率。由图 5c)可知,与出发菌 株 B. subtilis XH1 相比,重组菌株表现出较差的菌体 生长性能,尤其是重组菌株 B. subtilis XH4。有研 究^[22]报道,引入外源的 zwf²³⁴ 和 gnd³⁶¹ 不仅会显著 改变目标产物合成量,还会显著影响葡萄糖利用速 率和菌体生长。因此,造成重组菌株菌体生长差的 原因可能是由于更多的碳源用于 L-赖氨酸合成而 不是菌体生长。

2.4 HSD 对胞内副产物积累的影响分析

天冬氨酸族氨基酸以草酰乙酸为前体物进行生 物合成,包括5种氨基酸,即L-天冬氨酸、L-赖氨 酸、L-蛋氨酸、L-苏氨酸和 L-异亮氨酸。由图 4 可 知,L-赖氨酸生物合成途径中的重要中间物质天冬 氨酸半醛在 HSD 的催化作用下进入 L-赖氨酸生物 合成的竞争途径,从而影响 L-赖氨酸生物合成。虽 然通过失活 HSD 可以阻断竞争途径,但会使重组菌 株成为营养缺陷型菌株,需要在发酵过程中额外添 加高丝氨酸等物质,增加生产成本^[18]。为此,本研 究通过在重组菌株 B. subtilis XH4 中调节 HSD 酶活 力,尝试将B. subtilis 中的 HSD(编码基因 hom) 替换 为来自 C. glutamicum 的渗漏型 HSD (编码基因 hom⁵⁹)以有效降低竞争途径碳通量,获得目标重组 菌株 B. subtilis XH5(XH4 hom::hom⁵⁹)。不同菌株 生长情况、L-赖氨酸产量和副产物积累量见表 4。 由表4可知,重组菌株 B. subtilis XH5 菌体生长性能 表现出与菌株 B. subtilis XH4 相似的水平。需要指 出的是,尽管重组菌株 B. subtilis XH5 的菌体量低于 出发菌株 B. subtilis XHO 和 B. subtilis XH1,但其 L- 赖氨酸产量远高于二者。重组菌株 B. subtilis XH5 中L-赖氨酸产量达到(23.2±1.7)g/L,比菌株 B. subtilis XH1 和 B. subtilis XH4 分别增加了98.3% 和14.3%。此外,随着重组菌株 HSD 酶活力的降 低,仍可促进 L-赖氨酸的合成,同时减少其他4种 天冬氨酸族氨基酸的积累量。重组菌株 B. subtilis XH5 发酵液中未检测到 L-蛋氨酸、L-苏氨酸和 L-异亮氨酸,而菌株 B. subtilis XH1 和 B. subtilis XH4 在胞外都积累了一定量的副产物。这一结果表明, 替换来源于 C. glutamicum 的渗漏型 HSD,可以调节 B. subtilis 的胞内 HSD 酶活力水平,从而有利于促进 L-赖氨酸合成、减少副产物积累。

2.5 外源 DapDH 对 L-赖氨酸合成效率的影响分析

在已知的具有 L-赖氨酸生物合成途径的微生物和植物中,可以将 L-赖氨酸生物合成划分为两个完全不同的途径,即氨基乙二酸途径(AAA)和二氨基庚二酸途径(DAP)^[1]。DAP 是天冬氨酸族氨基酸合成途径中的一部分,存在 4 种不同的变化形式用于合成内消旋二氨基庚二酸,即脱氢酶途径、琥珀酰化酶途径、乙酰化酶途径和转氨酶途径^[23]。

B. subtilis 中只存在乙酰化酶途径,即以 L- Δ^1 -四氢吡 啶二羧酸为底物经5步酶促反应合成L-赖氨酸(图 4)。然而,一些革兰氏阳性菌(如 C. glutamicum)存 在更为简单的脱氢酶途径,该途径以 L-Δ¹-四氢吡 啶二羧酸为底物经2步酶促反应即可合成L-赖氨 酸^[23]。为了提高B. subtilis 合成 L-赖氨酸的效率,本 研究在菌株 B. subtilis XH5 中引入 C. glutamicum 中 的 DapDH(编码基因 ddh),获得重组菌株 B. subtilis XH6(XH5 pksD:: ddh)。菌株 XH5 和 XH6 的菌体 生长和 L-赖氨酸合成情况如图 6 所示。由图 6a) 可知,与出发菌株 B. subtilis XH5 不同,重组菌 B. subtilis XH6 表现出菌体生长延滞,但两者最终的 菌体量基本一致。由图 6b)可知,重组菌株 B. subtilis XH6 在发酵初期(10 h)就开始积累 L-赖 氨酸,这可能是导致重组菌株 B. subtilis XH6 生长延 滞的原因。重组菌株 B. subtilis XH6 中 L-赖氨酸产 量最高达到(25.6±2.3)g/L,比菌株 B. subtilis XH5 增加了 10.3%。这一结果表明,来源于 C. glutamicum 的 DapDH 可以调节B. subtilis 中的 DAP 碳通量,引导部分碳流进入脱氢酶途径,从而 促进 L-赖氨酸的合成。

表4 不同菌株生长情况、L-赖氨酸产量和副产物积累量 Table 4 The cell growth, the concentration of L-lysine and by-products in different strains

					-	
菌株	OD_{562}	L-赖氨酸/(g·L ⁻¹)	L-天冬氨酸/(g·L ⁻¹)	L-蛋氨酸/(g·L ⁻¹)	L-苏氨酸/(g·L ⁻¹)	L-异亮氨酸/(g·L ⁻¹)
XH0	38.4±3.5	<0.1	<0.1	<0.1	<0.1	<0.1
XH1	37.5±4.1	11.7±0.6	0.4±0.03	0.5±0.02	0. 9±0. 03	0.3±0.05
XH4	34.2±1.6	20.3±1.9	0.7±0.10	0.8±0.07	1.4±0.12	0.9±0.04
XH5	34. 9±2. 4	23.2±1.7	0.5 ± 0.04	<0.1	<0.1	<0.1

图 6 菌株 XH5 和 XH6 的菌体生长和 L-赖氨酸合成情况 Fig. 6 The cell growth and L-lysine production in XH5 and XH6 strains

3 结论

本研究首次以饲料工业中常用的益生菌 B. subtilis ACCC11025 为出发菌株,围绕胞内前体物 和辅酶因子 NADPH 供应、副产物积累和优化终端合 成途径对 L-赖氨酸合成的影响,采用 CRISPR-Cas9 基因编辑技术对磷酸戊糖途径、L-赖氨酸终端合成途 径和 L-赖氨酸竞争支路代谢途径进行重构,获得一 株枯草芽孢杆菌重组菌株。结果表明,将B. subtilis 中 内源的参与 L-赖氨酸合成的关键性酶替换成来源 于 C. glutamicum 中的解除反馈调节作用的关键性 酶(AKⅢ、G6PD 和 6GPD),可有效为合成 L-赖氨 酸提供前体物和辅酶因子 NADPH,保证在B. subtilis 中有效积累 L-赖氨酸。此外,将B. subtilis 中 L-赖 氨酸合成支路途径中的限速酶 HSD 替换成来源于 C. glutamicum 中的渗漏型 HSD,可实现在不影响菌体 生长的情况下降低副产物积累,从而保证在B. subtilis 中高效清洁发酵生产 L-赖氨酸。进一步实验结果表 明,在B. subtilis 中引入来自 C. glutamicum 的脱氢酶 途径,可以引导碳流进入脱氢酶途径,从而促进 L-赖氨酸的高效合成。经上述对B. subtilis 基因组进 行的一系列遗传改造,最终获得的重组菌株 B. subtilis XH6中L-赖氨酸产量达到(25.6±2.3)g/L。重组菌 株 B. subtilis XH6 经 10 次传代培养后仍然具有稳定的 L-赖氨酸产量,这些结果表明重组菌株 B. subtilis XH6 具有良好的遗传稳定性。此外,重组菌株 B. subtilis XH6的出发菌株为饲料工业常用的益生菌B. subtilis ACCC11025,因此重组菌株 B. subtilis XH6 保留了出发 菌株的益生功能。综上所述, B. subtilis XH6 即为兼具 益生功能和 L-赖氨酸高效合成功能的"双功能"枯草 芽孢杆菌重组菌株。

参考文献:

- [1] LIU N, ZHANG T T, RAO Z M, et al. Reconstruction of the diaminopimelic acid pathway to promote L-lysine production in *Corynebacterium glutamicum* [J]. International Journal of Molecular Sciences, 2021,22(16):9065.
- [2] LI C L, RUAN H Z, LIU L M, et al. Rational

reformation of *Corynebacterium glutamicum* for producing L-lysine by one-step fermentation from raw corn starch[J]. Applied Microbiology and Biotechnology,2022,106(1):145-160.

- [3] XU J Z, RUAN H Z, YU H B, et al. Metabolic engineering of carbohydrate metabolism systems in *Corynebacterium glutamicum* for improving the efficiency of L-lysine production from mixed sugar [J]. Microbial Cell Factories, 2020, 19(1):39.
- [4] 王雅敏,刘莹露,李景河,等.益生菌发酵饲料
 对蛋鸡生产性能、蛋品质及脂质代谢的影响
 [J].家畜生态学报,2021,42(10):27-33.
- [5] 张桂枝,刘璐,靳双星,等.枯草芽孢杆菌发酵制剂 对饲喂含黄曲霉毒素 B1 饲料肉鸡免疫功能的影 响[J].中国畜牧杂志,2019,55(7):142-146.
- [6] WANG C, WEI S Y, XU B C, et al. Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow's performance, immune status and gut microbiota[J]. Microbial Biotechnology, 2021, 14(2):614-627.
- [7] MALIK W A, JAVED S. Biochemical characterization of cellulase from *Bacillus subtilis* strain and its effect on digestibility and structural modifications of lignocellulose rich biomass [J]. Frontiers in Bioengineering and Biotechnology, 2021,9:800265.
- [8] LEE J E, KYE Y C, PARK S M, et al. Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens [J]. Veterinary Research, 2020, 51(1):68.
- [9] 张林鑫,赵春萍,王婧,等.枯草芽孢杆菌对家 禽生产影响的研究概述[J].贵州畜牧兽医, 2020,44(3):11-14.
- [10] 曾国洪,丛丽娜,毕楠.枯草芽孢杆菌诱变株 产抗菌脂肽的特性[J].大连工业大学学报, 2019,38(4):235-238.
- [11] 欧荣娣,邢月腾,范觉鑫,等. 高产赖氨酸枯草芽 孢杆菌的选育[J]. 中国饲料,2014(20):29-31.
- [12] XU J Z, WU Z H, GAO S J, et al. Rational modification of tricarboxylic acid cycle for improving L-lysine production in *Corynebacterium glutami-*

cum[J]. Microbial Cell Factories, 2018, 17:105.

- [13] PETERS-WENDISH P G, SCHIEL B, WENDISH V F, et al. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by *Corynebacterium glutamicum* [J]. Journal of Molecular Microbiology and Biotechnology, 2001, 3(2):295-300.
- [14] XU J Z, YANG H K, ZHANG W G. NADPH metabolism: A survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis[J]. Critical Reviews in Biotechnology, 2018, 38(7): 1061-1076.
- [15] SACHLA A J, ALFONSO A J, HELMANN J D. A simplified method of CRISPR-Cas9 engineering of Bacillus subtilis [J]. Microbiology Spectrum, 2021,9(2):e00754-21.
- [16] FENG L Y, XU J Z, ZHANG W G. Improved L-leucine production in *Corynebacterium glutamicum* by optimizing the aminotransferases [J]. Molecules, 2018, 23(9):2102.
- [17] XU J Z, HAN M, ZHANG J L, et al. Metabolic engineering *Corynebacterium glutamicum* for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway[J]. Amino Acids, 2014,46(9):2165-2175.

- [18] 许金坤,闵伟红,詹冬玲,等.北京棒杆菌 AS1.299 高丝氨酸脱氢酶突变体 D206G 的酶学性质表 征[J].食品科学,2013,34(7):240-244.
- [19] 孙玉莹. 革兰氏阳性菌枯草芽孢杆菌中赖氨酸核糖开关调控机制的研究[D]. 武汉:武汉大学,2019.
- [20] 魏佳,王壮壮,于海波,等.产L-苏氨酸重组 大肠杆菌的构建和发酵性能[J].微生物学通报,2019,46(4):695-706.
- [21] WANG Y Y, ZHANG F, XU J Z, et al. Improvement of L-leucine production in *Corynebacterium* glutamicum by altering the redox flux[J]. International Journal of Molecular Sciences, 2019, 20 (8):2020.
- [22] WANG Z W, MA X H, SHEN Z, et al. Enhancement of riboflavin production with *Bacillus subtilis* by expression and site-directed mutagenesis of *zwf* and *gnd* gene from *Corynebacterium glutamicum*[J]. Bioresource Technology, 2011, 102 (4):3934-3940.
- [23] XU J Z, RUAN H Z, LIU L M, et al. Overexpression of thermostable meso-diaminopimelate dehydrogenase to redirect diaminopimelate pathway for increasing L-lysine production in Escherichia coli[J]. Scientific Reports, 2019, 9:2423.

Metabolic engineering for improving the L-lysine production by *Bacillus subtilis*

ZHANG Xiaoxia¹, CHEN Shengling², ZHU Zhiqun¹, KANG Chuntao¹, XU Jianzhong²

1. Jiangsu Xinghai Biotechnology Co., Ltd., YanCheng 224233, China;

2 School of Biotechnology/The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, WuXi 214122, China

Abstract: In order to construct a dual-functional *B. subtilis* with probiotic function and L-lysine production, *B. subtilis* ACCC11025 was systematically modified. These results indicated that the strain with replacement of *thrD*, *zwf* and *gnd* from *B. subtilis* by $lysC^{311}$, *zwf*^{234} and *gnd*^{361} from *C. glutamicum* (i. e., *B. subtilis* XH4) was beneficial to L-lysine production, and the yield of L-lysine was (20.3 ± 1.9) g/L. In addition, the strain with replacement of *hom* from *B. subtilis* by *hom*⁵⁹ from *C. glutamicum*(i.e., *B. subtilis* XH5) produced (23.2 ± 1.7) g/L of L-lysine without the decrease of cell growth. In addition, the yield of by-products in *B. subtilis* XH5 was significantly decreased. Moreover, the DapDH from *C. glutamicum* was introduced into the *B. subtilis* XH5 (i. e, *B. subtilis* XH6), resulting in the increase of L-lysine production because of the redirection of the carbon flux in DAP pathway. The resulted recombinant strain *B. subtilis* XH6 produced (25. 6±2. 3) g/L of L-lysine.

Key words: Bacillus subtilis; L-lysine production; CRISPR-Cas9; feedback regulation; metabolic engineering