JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

养猪废水处理技术的研究进展

梁瑜海 肖咏茵

梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
引用本文: 梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
Citation: LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010

养猪废水处理技术的研究进展

    作者简介: 梁瑜海(1986-),男,广西壮族自治区崇左市人,华南农业大学首聘副教授,博士,主要研究方向为污水处理新技术.;
  • 基金项目: 国家自然科学基金项目(51708229);广东省珠江人才计划“青年拔尖人才”项目(2017GC010157)

  • 中图分类号: X703

The advance of swine wastewater treatment technology

  • Received Date: 2020-04-30

    CLC number: X703

  • 摘要: 综述了不同养猪废水处理技术的基本原理和优缺点,发现,传统处理技术多侧重于对废水中污染物的去除,但未考虑总氮的控制,难以实现节能降耗和资源的回收利用;新型处理技术不仅可以减少总氮去除过程中的能耗、物耗,还可以实现资源的回收利用.为了实现可持续发展战略,未来达到更高的出水排放标准,现有处理技术还需在优化运行条件、增加预处理措施、组合多技术处理等方面做出相应改进;而未来养猪废水处理新技术也会朝着低耗、高效和高质的方向发展.
    1. [1]

      马彦涛,薛金凤.养猪废水处理技术进展[J].环境与可持续发展,2009,34(5):29.

    2. [2]

      中华人民共和国国家统计局.第一次全国污染源普查公报[J].新华月报,2010(6):65.

    3. [3]

      潘庆.养猪场的废水污染及防治对策[J].环境污染治理技术与设备,2002(9):66.

    4. [4]

      万风,王海燕,周岳溪,等.养猪废水处理技术研究进展[J].农业灾害研究,2012,2(1):25.

    5. [5]

      欧阳婷,王涛,樊华.养猪废水深度治理技术研究进展[J].安徽农业科学,2016,44(35):81.

    6. [6]

      张德林.养猪养殖户沼气池的建设[J].现代农村科技,2012(15):78.

    7. [7]

      韦成乔.生态养猪沼气池的建设和管理研究[J].畜禽业,2018,29(11):59

    8. [8]

      李轶,刘雨秋,张镇,等.玉米秸秆与猪粪混合厌氧发酵产沼气工艺优化[J].农业工程学报,2014,30(5):185.

    9. [9]

      孙全平,邱凌,李自林,等.酒糟与猪粪混合厌氧发酵产沼气的研究[J].西北农业学报,2013,22(3):199.

    10. [10]

      邓媛方,邱凌,孙全平,等.蘑菇废弃菌棒及其与猪粪混合发酵对沼气产量及质量的影响[J].农业环境科学学报,2012,31(3):613.

    11. [11]

      LIU Y,MA S C,HUANG L,et al.Two-step heating mode with the same energy consumption as conventional heating for enhancing methane production during anaerobic digestion of swine wastewater[J].Journal of Environmental Management,2018,209:301.

    12. [12]

      赵青玲,杨世关,张百良.UASB处理养猪废水条件下进水浓度对污泥颗粒化的影响[J].可再生能源,2005(5):38.

    13. [13]

      郑仁宏.UASB处理畜禽养殖废水的启动研究[D].雅安:四川农业大学,2007.

    14. [14]

      万莉,邹义龙,弓晓峰,等.电增强零价铁强化厌氧氨氧化处理高氮养猪废水[J].环境科学研究,2015,28(8):1302.

    15. [15]

      ZENG Z,ZHANG M,KANG D,et al.Enhanced anaerobic treatment of swine wastewater with exogenous granular sludge:Performance and mechanism[J].Science of the Total Environment,2019,697:1.

    16. [16]

      ZHOU Z,PING Z,CHENG S,et al.A challenge in anaerobic digestion of swine wastewater:Recalcitrance and enhanced-degradation of dietary fibres[J].Biodegradation,2019,30(5/6):389.

    17. [17]

      CHEN J L,XU Y B,LI Y X,et al.Effective removal of nitrate by denitrification re-enforced with a two-stage anoxic/oxic (A/O) process from a digested piggery wastewater with a low C/N ratio[J].Journal of Environmental Management,2019,240:19.

    18. [18]

      夏经纬.倒置A2/O2与人工湿地处理猪场废水的试验研究[D].广州:华南农业大学,2016.

    19. [19]

      郑志彬.预处理/沼气池/两级AO工艺处理养殖废水[J].资源节约与环保,2018(4):88.

    20. [20]

      陈凤祥.UASB/两级AO工艺处理养猪废水的应用研究[J].广州化工,2014,43(4):89.

    21. [21]

      陈威,施武斌,龚松,等.EGSB-A/O-MBR工艺处理规模化猪场废水[J].给水排水,2014,40(3):45.

    22. [22]

      曾哲伟.A2/O-混凝工艺处理养猪场废水[J].广州化工,2016,44(11):185.

    23. [23]

      WU X,ZHU J,CHENG J H,et al.Optimization of three operating parameters for a two-step fed sequencing batch reactor (SBR) system to remove nutrients from swine wastewater[J].Applied Biochemistry and Biotechnology,2015,175(6):2857.

    24. [24]

      LIU J,LI J,WANG X D,et al.Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP[J].Journal of Environmental Sciences,2017,51(1):332.

    25. [25]

      SHENG X L,LIU R,SONG X Y,et al.Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J].Frontiers of Environmental Science & Engineering,2017,11(3):8.

    26. [26]

      SONG X Y,LIU R,CHEN L J,et al.Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater[J].Frontiers of Environmental Science & Engineering,2017,11(3):e13.

    27. [27]

      LI J Z,MENG J,LI J L,et al.The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure-free piggery wastewater[J].Bioresource Technology,2016,209:360.

    28. [28]

      MENG J,LI J L,LI J Z,et al.Efficiency and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating manure-free piggery wastewater with low COD/TN ratio[J].Bioresource Technology,2016,201:166.

    29. [29]

      MENG J,LI J L,LI J Z,et al.The role of COD/N ratio on the start-up performance and micro-bial mechanism of an upflow microaerobic reactor treating piggery wastewater[J].Journal of Environmental Management,2018,217:825.

    30. [30]

      施云芬,魏冬雪.MBBR两种填料对养猪废水脱氮除磷效果对比[J].化学通报,2014,77(6):562.

    31. [31]

      MENG J,LI J L,LI J Z,et al.Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel upflow microaerobic biofilm reactor[J].Bioresource Technology,2018,249:935.

    32. [32]

      万莉.规模化养猪场废水(沼液)BCO+SBBR好氧处理新工艺研究[D].南昌:南昌大学,2016.

    33. [33]

      宋承谋,蔡映红,吴正杰,等.规模化养猪废水处理问题及对策[J].中国猪业,2016,11(2):66.

    34. [34]

      ZHANG X,INOUE T,KATO K,et al.Perfor-mance of hybrid subsurface constructed wetland system for piggery wastewater treatment[J].Water Science and Technology,2016,73(1):13.

    35. [35]

      LI X,LI Y Y,LI Y,et al.Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments[J].Applied Microbiology and Biotechnology,2018,102:10755.

    36. [36]

      DONG X,REDDY G.Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J].Bioresource Technology,2010,101(4):1175.

    37. [37]

      HAN Z,DONG J,SHEN Z,et al.Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite[J].Chemosphere,2019,217:364.

    38. [38]

      LI L,LIU M,WU M,et al.Effects of duckweed (Spriodela polyrrhiza) remediation on the composition of dissolved organic matter in effluent of scale pig farms[J].Journal of Environmental Sciences,2017,55(5):247.

    39. [39]

      WANG W,YANG C,TANG X,et al.Carbon and energy fixation of great duckweed Spirodela polyrrhiza growing in swine wastewater[J].Environmental Science and Pollution Research,2015,22(20):15804.

    40. [40]

      LUO P,LIU F,LIU X,et al.Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum[J].Science of the Total Environment,2017,576:490.

    41. [41]

      LI X,ZHANG M,LIU F,et al.The significance of Myriophyllum elatinoides for swine wastewater treatment:Abundance and community structure of ammonia-oxidizing microorganisms in sediments[J].PLOS ONE,2015,10(10):e0139778.

    42. [42]

      LI X,ZHANG M,LIU F,et al.Abundance and distribution of microorganisms involved in denitrification in sediments of a Myriophyllum elatinoides purification system for treating swine wastewater[J].Environmental Science and Pollution Research International,2015,22(22):17906.

    43. [43]

      CHEN L,LIU F,JIA F,et al.Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater[J].Applied Microbiology and Biotechnology,2017,101(3):1301.

    44. [44]

      HUANG X,ZHENG J,LIU C,et al.Performance and bacterial community dynamics of vertical flow constructed wetlands during the treatment of antibiotics-enriched swine wastewater[J].Chemical Engineering Journal,2017,316:727.

    45. [45]

      敖子强,付嘉琦,桂双林,等.处理养猪废水的人工湿地植物筛选综述[J].家畜生态学报,2016,37(7):87.

    46. [46]

      许惠英,朱新富,王志荣.人工湿地技术在养猪废水处理中的应用[J].浙江树人大学学报(自然科学版),2010,10(4):15.

    47. [47]

      童凯,李俊斌.养猪废水处理工程实例介绍[J].北方环境,2011,23(7):179.

    48. [48]

      万莉,章洪涛,弓晓峰,等.鄱阳湖流域养猪废水治理概况与进展[J].南水北调与水利科技,2015,13(4):798.

    49. [49]

      邓玉君,叶志隆,叶欣,等.流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成[J].环境工程学报,2016,10(6):2933.

    50. [50]

      HUANG H,LIU J,WANG S,et al.Nutrients removal from swine wastewater by struvite precipitation recycling technology with the use of Mg3(PO4)2 as active component[J].Ecological Engineering,2016,92:111.

    51. [51]

      KIM D,MIN K,LEE K,et al.Effects of pH,molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater[J].Environmental Engineering Research,2017,22(1):12.

    52. [52]

      WU Z,ZOU S,ZHANG B,et al.Forward osmosis promoted in-situ formation of struvite with simultaneous water recovery from digested swine wastewater[J].Chemical Engineering Journal,2018,342:274.

    53. [53]

      LUO Z,WANG D,YANG J,et al.Nitrogen removal from digested piggery wastewater using fermented superphosphate within the pretreatment stage and an MAP fertilizer pot test[J].Journal of Cleaner Production,2019,212:372.

    54. [54]

      赵倩倩,顾玲.PVDF膜接触器脱除回收垃圾渗滤废液中的氨氮[J].天津化工,2014,28(1):53.

    55. [55]

      张宗阳,郝兴阁,赵建敏,等.双套型中空纤维膜接触器用于脱除水溶液中氨氮[J].高校化学工程学报,2016,30(5):1213.

    56. [56]

      刘芮,陆军,李保,等.错流式中空纤维膜接触器脱除水中氨氮的实验研究[J].工业水处理,2015,35(3):52.

    57. [57]

      SHI L,HU Y,XIE S,et al.Recovery of nutrients and volatile fatty acids from pig manure hydrolysate using two-stage bipolar membrane electrodialysis[J].Chemical Engineering Journal,2018,334:134.

    58. [58]

      LIM S,KIM T,KIM J,et al.Enhanced treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor[J].Separation and Purification Technology,2016,157:72.

    59. [59]

      HUANG H,ZHANG D,GUO G,et al.Dolomite application for the removal of nutrients from synthetic swine wastewater by a novel combined electrochemical process[J].Chemical Engineering Journal,2018,335:665.

    60. [60]

      WANG H M,MIAO Z,LI Y F,et al.Energy self-sustained treatment of swine wastewater in a microbial electrochemical technology-centered hybrid system[J].Environmental Science:Water Research & Technology,2020,6(3):747.

    61. [61]

      DING W J,CHENG S A,YU L L,et al.Effective swine wastewater treatment by combining microbial fuel cells with flocculation[J].Chemosphere,2017,182:567.

    62. [62]

      CERRILLO M,OLIVERAS J,VINAS M,et al.Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems[J].Bioelectrochemistry,2016,110:69.

    63. [63]

      CERRILLO M,VINAS M,BONMATI A.Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell[J].Bioresource Technology,2016,216:362.

    64. [64]

      SCHERSON Y,WELLS G,WOO S,et al.Nitrogen removal with energy recovery through N2O decomposition[J].Energy Environ Sci,2013,6(1):241.

    65. [65]

      SCHERSON Y,WOO S,CRIDDLE C.Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery[J].Environmental Science & Technology,2014,48(10):5612.

    66. [66]

      WESSBACH M,THIEL P,DREWES J,et al.Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions[J].Bioresource Technology,2018,255:58.

    67. [67]

      MEISSBACH M,GOSSLER F,DREWES J,et al.Separation of nitrous oxide from aqueous solutions applying a micro porous hollow fiber membrane contactor for energy recovery[J].Separation and Purification Technology,2018,195:271.

    68. [68]

      WEISSBACH M,DREWES J,KOCH K.Application of the oxidation reduction potential (ORP) for process control and monitoring nitrite in a coupled aerobic-anoxic nitrous decomposition operation (CANDO)[J].Chemical Engineering Journal,2018,343:484.

    69. [69]

      MAYUNG J,WANG Z,YUAN T,et al.Production of nitrous oxide from nitrite in stable type ii methanotrophic enrichments[J].Environmental Science & Technology,2015,49(18):10969.

    70. [70]

      GAO H,LIU M,GRIFFIN J,et al.Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms[J].American Chemical Society,2017(8):4531.

    71. [71]

      WANG Y,GAO W,YEN H,et al.Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J].Bioresource Technology,2015,198:619.

    72. [72]

      VIMALKUMAR G,SURESH S,DHARMARJAN R,et al.Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp.MM3[J].Bioresource Technology,2018,256:254.

    73. [73]

      WEN Y,HE Y,JI X,et al.Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage[J].Bioresource Technology,2017,243:247.

    74. [74]

      LEE Y,HAN G.Complete reduction of highly concentrated contaminants in piggery waste by a novel process scheme with an algal-bacterial symbiotic photobioreactor[J].Journal of Environmental Management,2016,177:202.

    75. [75]

      YU J,HU H,WU X,et al.Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater[J].Science of the Total Environment,2020,701:1.

    76. [76]

      GUO G,CAO W,SUN S,et al.Nutrient removal and biogas upgrading by integrating fungal-microalgal cultivation with anaerobically digested swine wastewater treatment[J].Journal of Applied Phycology,2017,29(6):2857.

    77. [77]

      KIM H,CHOI W,CHAE A,et al.Evaluating integrated strategies for robust treatment of high saline piggery wastewater[J].Water Research,2016,89:222.

    78. [78]

      WANG M,YANG Y,CHEN Z,et al.Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae[J].Bioresource Technology,2016,222:130.

    79. [79]

      袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000(2):29.

    80. [80]

      于德爽,彭永臻,张相忠,等.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003(1):40.

    81. [81]

      尚会来,彭永臻,张静蓉,等.温度对短程硝化反硝化的影响[J].环境科学学报,2009,29(3):516.

    82. [82]

      曾薇,彭永臻,王淑莹,等.两段SBR法去除有机物及短程硝化反硝化[J].环境科学,2002(2):50.

    83. [83]

      高大文,彭永臻,杨庆,等.应用实时控制实现和稳定短程硝化反硝化[J].中国给水排水,2003(12):1.

    84. [84]

      董文艺,赵志军,李继.甲烷作为反硝化气体碳源的研究进展[J].安全与环境工程,2011,18(4):64.

    85. [85]

      王东豪,廖方成,邓正栋,等.氧气浓度对好氧甲烷氧化耦合反硝化过程的影响[J].净水技术,2019,38(7):101.

    86. [86]

      范秋香,吴箐,常佳丽,等.反硝化型甲烷厌氧氧化的研究进展[J].生态学杂志,2015,34(6):1747.

    87. [87]

      XIE G,LIU T,CAI C,et al.Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J].Water Research,2018,131:196.

    88. [88]

      FAN S,XIE G,LU Y,et al.Granular sludge coupling nitrate/nitrite dependent anaerobic methane oxidation with anammox:From proof-of-concept to high rate nitrogen removal[J].Environmental Science & Technology,2020,54(1):297.

    89. [89]

      HU Z,RU D,WANG Y,et al.Optimization of a nitrite-dependent anaerobic methane oxidation (n-damo) process by enhancing methane availability[J].Bioresource Technology,2019,275:101.

    90. [90]

      CAI C,HU S,CHEN X,et al.Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-depen-dent denitrification and anammox[J].Science of the Total Environment,2018,639:278.

    91. [91]

      BEATRIZ M,CRUZ G,DIMITAR K,et al.Anammox for ammonia removal from pig manure effluents:Effect of organic matter content on process performance[J].Bioresource Techno-logy,2009,100(7):2171.

    92. [92]

      ZHANG Z,ZHANG Q,XU J,et al.Long-term effects of heavy metals and antibiotics on granule-based anammox process:Granule property and performance evolution[J].Applied Microbiology and Biotechnology,2016,100(5):2417.

    93. [93]

      NI S,YANG N.Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure[J].PeerJ,2014,2(1):e336.

    94. [94]

      何占飞.厌氧氨氧化处理养殖废水启动实验研究[D].西安:西南交通大学,2008.

    95. [95]

      张正哲.重金属离子对厌氧氨氧化颗粒污泥的影响及其修复策略研究[D].杭州:杭州师范大学,2016.

    96. [96]

      李晶.氟喹诺酮抗生素对厌氧氨氧化菌活性抑制研究[D].大连:大连理工大学,2015.

    97. [97]

      赵楠婕,解庆林,游少鸿,等.厌氧氨氧化工艺处理猪场废水沼液的试验研究[J].四川环境,2012,31(5):4.

    98. [98]

      荀方飞,何占飞,葛亚军,等.厌氧氨氧化处理猪场养殖废水最佳运行工艺研究[J].广东农业科学,2010,37(7):174.

    99. [99]

      WANG S,WANG L,DENG L W,et al.Performance of autotrophic nitrogen removal from digested piggery wastewater[J].Bioresource Technology,2017,241:465.

    1. [1]

      李跑谭惠珍谢叔娥苏光林董怡青唐辉 . 基于近红外光谱技术有监督模式识别的青皮产地溯源分析. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  15
  • 文章访问数:  1802
  • 引证文献数: 0
文章相关
  • 收稿日期:  2020-04-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
引用本文: 梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
Citation: LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010

养猪废水处理技术的研究进展

    作者简介:梁瑜海(1986-),男,广西壮族自治区崇左市人,华南农业大学首聘副教授,博士,主要研究方向为污水处理新技术.
  • 华南农业大学 资源环境学院, 广东 广州 510642
基金项目:  国家自然科学基金项目(51708229);广东省珠江人才计划“青年拔尖人才”项目(2017GC010157)

摘要: 综述了不同养猪废水处理技术的基本原理和优缺点,发现,传统处理技术多侧重于对废水中污染物的去除,但未考虑总氮的控制,难以实现节能降耗和资源的回收利用;新型处理技术不仅可以减少总氮去除过程中的能耗、物耗,还可以实现资源的回收利用.为了实现可持续发展战略,未来达到更高的出水排放标准,现有处理技术还需在优化运行条件、增加预处理措施、组合多技术处理等方面做出相应改进;而未来养猪废水处理新技术也会朝着低耗、高效和高质的方向发展.

English Abstract

参考文献 (99) 相关文章 (1)

目录

/

返回文章