[1] 刘丁溪, 杨杰程, 周宏超, 等.动物性食品中抗菌药物残留检测方法研究进展[J].中国畜牧兽医, 2019, 46(7):2183-2192.
[2] DING R, CHEN Y, WANG Q S, et al.Recent advances in quantum dots-based biosensors for antibiotics detection[J].Journal of Pharmaceutical Analysis, 2022, 12(3):355-364.
[3] 杨耀彬, 刘爽, 冯佳莹, 等.抗生素检测方法的研究概况[J].山东化工, 2022, 51(12):106-107.
, 114.
[4] 林嫚婷, 苏亚霞, 胡汉昆.食品中抗生素残留的预处理及检测方法研究进展[J].食品与药品, 2020, 22(4):304-309.
[5] HAN S, YANG L, WEN Z G, et al.A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline[J].Journal of Hazardous Materials, 2020, 398:122894.
[6] HENDRICKSON O D, ZVEREVA E A, ZHERDEV A V, et al.Development of a double immunochromatographic test system for simultaneous determination of lincomycin and tylosin antibiotics in foodstuffs[J].Food Chemistry, 2020, 318:126510.
[7] UCHIDA K, KONISHI Y, HARADA K, et al.Monitoring of antibiotic residues in aquatic products in Urban and rural areas of Vietnam[J].Journal of Agricultural and Food Chemistry, 2016, 64(31):6133-6138.
[8] 周鹏宇, 刘霄, 唐恩应, 等.昆明市奶牛场鲜奶抗生素残留调查[J].农产品加工, 2020, 498(4):77-80.
[9] VOIGT A M, CIORBA P, DÖHLA M, et al.The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany[J].International Journal of Hygiene and Environmental Health, 2020, 224:113449.
[10] 中华人民共和国农业农村部, 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局.食品安全国家标准食品中41种兽药最大残留限量:GB 31650.1-2022[S].北京:中国标准出版社, 2022.
[11] 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局.食品安全国家标准食品中41种兽药最大残留限量:GB 31650.1-2019[S].北京:中国标准出版社, 2019.
[12] SHARMA P C, GOYAL R, SHARMA A, et al.Insights on fluoroquinolones in cancer therapy:Chemistry and recent developments[J].Materials Today Chemistry, 2020, 17:100296.
[13] 周莉, 童裳伦.碘氧化铋/钨酸铜复合材料的制备及对氟喹诺酮类抗生素的吸附性能[J].环境科学学报, 2021, 41(10):3993-4002.
[14] 沙乃庆, 李艳红.氟喹诺酮类抗生素水污染现状及去除技术研究进展[J].工业水处理, 2021, 41(5):22-28.
[15] 管凡荀.鸡蛋、禽肉中氟苯尼考及其代谢物和三种氟喹诺酮类药物残留同时检测的HPLC-FLD方法研究[D].扬州:扬州大学, 2023.
[16] 刘艳容, 黄璐, 李宁, 等.青霉素结合蛋白的重组表达及其在β-内酰胺类抗生素检测中的应用[J].食品安全质量检测学报, 2022, 13(1):156-162.
[17] 王淑婷, 刘坤, 刘静, 等.UPLC-MS/MS检测牛奶中19种β-内酰胺类药物残留的两种前处理方法对比试验[J].中国兽药杂志, 2022, 56(8):38-45.
[18] QIAO M, YING G G, S INGERR A C, et al.Review of antibiotic resistance in China and its environment[J].Environment International, 2018, 110:160-172.
[19] 李月, 刘丽强, 胥传来, 等.结合抗体-抗原反应和受体-配体反应建立胶体金生物传感器用于检测33种β-内酰胺类抗生素[J].中国科学:材料科学(英文版), 2021, 64(8):2056-2066.
[20] 岑霞, 程思宇, 石宗民, 等.大环内酯类抗生素在饮用水处理过程中的污染特征及其氯化反应机制[J].环境科学, 2022, 44(9):5017-5024.
[21] DINOS G P.The macrolide antibiotic renaissance[J].British Journal of Pharmacology, 2017, 174(18):2967-2983.
[22] 李涛, 王策, 徐兆安, 等.基于分散固相萃取-超高效液相色谱串联质谱法测定沉积物中大环内酯类抗生素[J].环境化学, 2022, 41(1):231-240.
[23] 李同, 胡俊, 黄辉, 等.污水中大环内酯类抗生素去除技术研究进展[J].工业水处理, 2021, 41(6):88-97.
[24] ABU-GHARBIEH E, VASINA V, POLUZZI E, et al.Antibacterial macrolides:A drug class with a complex pharmacological profile[J].Pharmacological Research, 2004, 50(3):211-22.
[25] 马江雄, 周欣, 赵超, 等.水体中痕量四环素类抗生素分析方法研究进展[J].化学通报, 2022, 85(11):1336-1345.
[26] 崔政武, 王洋, 于锐.长期施用猪粪黑土农田中四环素类抗生素含量特征及其生态风险[J].中国环境科学, 2023, 43(2):748-755.
[27] XU J, WANG J X, LI Y X, et al.A wearable gloved sensor based on fluorescent Ag nanoparticles and europium complexes for visualized assessment of tetracycline in food samples[J].Food Chemistry, 2023, 424:136376.
[28] 栗慧, 李佳仪, 彭伟.四环素类抗生素检测方法研究进展[J].河北北方学院学报(自然科学版), 2018, 34(2):41-45.
, 48.
[29] ZHANG Y, LYU M, GAO P F, et al.The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline[J].Sensors and Actuators B(Chemical), 2021, 326:129009.
[30] 杨丽, 王雪蓉, 陈大鹏, 等.超高效液相色谱-串联质谱法测定水产品中硝基呋喃类代谢物[J].养殖与饲料, 2023, 22(4):26-29.
[31] 竺芯宇.表面增强拉曼光谱检测硝基呋喃类抗生素[D].无锡:江南大学, 2014.
[32] 呼念念, 陈冬东, 黎烨昕, 等.鸡肉中硝基呋喃类兽药残留量检测能力验证[J].食品工业, 2022, 43(5):137-141.
[33] ØYE B E, COUILLARD F D, VALDERSNES S.Complete validation according to current international criteria of a confirmatory quantitative method for the determination of nitrofuran metabolites in seafood by liquid chromatography isotope dilution tandem mass spectrometry[J].Food Chemistry, 2019, 300:125175.
[34] 封腾望, 王新新, 穆树荷, 等.滤过型净化-超高效液相色谱-三重四极杆/复合线性离子阱质谱法测定草鱼肌肉冻干粉中4种硝基呋喃类代谢物[J].食品安全质量检测学报, 2022, 13(13):4180-4187.
[35] 陈志辉, 姜杰, 孙国新.磺胺类抗生素的来源和去除技术的研究进展[J].环境工程, 2023, 41(S1):80-86.
, 130.
[36] ZAMORA-GÁLVEZ A, AIT-LAHCEN A, MERCANTE L A, et al.Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection[J].Analytical Chemistry, 2016, 88(7):3578-3584.
[37] 纪浩, 杨依琳, 邢戎光, 等.渭河西安段水体中磺胺类抗生素的污染特征及生态风险评价[J].环境污染与防治, 2023, 45(4):521-527.
[38] 刘琳.表面增强拉曼光谱结合分子印迹技术的磺胺类抗生素识别研究[D].无锡:江南大学, 2023.
[39] 程于梦, 单新新, 杨梦艳, 等.动物源革兰氏阳性细菌对酰胺醇类和噁唑烷酮类药物的耐药机制研究进展[J].黑龙江畜牧兽医, 2020(7):46-48, 53.
[40] 陈建南.UPLC-MS/MS测定海带中酰胺醇类药物残留[J].食品工业, 2022, 43(11):292-294.
[41] 王晓虎. 分子印迹聚合物微球的制备及固相萃取-HPLC测定牛奶中氯霉素类抗生素残留[D].保定:河北大学, 2013.
[42] FAN Y, CHE S Y, ZHANG L, et al.Highly sensitive visual fluorescence sensor for aminoglycoside antibiotics in food samples based on mercaptosuccinic acid-CdTe quantum dots[J].Food Chemistry, 2023, 404:134040.
[43] 孟飞, 周小华, 袁耀佐.氨基糖苷类抗生素检测技术的发展[J].药学与临床研究, 2022, 30(5):441-446.
[44] 高月, 王耀, 胡骁飞, 等.氨基糖苷类药物的危害及其检测方法研究进展[J].河南农业科学, 2016, 45(6):9-14.
[45] 张政.基于分子印迹技术的氨基糖苷类抗生素多残留检测方法研究[D].烟台:烟台大学, 2021.
[46] LAN L Y, YAO Y, PING J F, et al.Recent advances in nanomaterial-based biosensors for antibiotics detection[J].Biosensors and Bioelectronics, 2017, 91:504-514.
[47] MOHAMMADZADEH M, MONTASERI M, HOSSEINZADEH S, et al.Antibiotic residues in poultry tissues in Iran:A systematic review and meta-analysis[J].Environmental Research, 2022, 204:112038.
[48] SOARES V M, PEREIRA J G, BARRETO F, et al.Residues of veterinary drugs in animal products commercialized in the border region of Brazil, Argentina, and Uruguay[J].Journal of Food Protection, 2022, 85(6):980-986.
[49] KYRIAKIDES D, PANDERI I, HADIGEORGIOU M, et al.Veterinary antimicrobial residues in pork meat in Cyprus:An exposure assessment[J].Journal of Food Composition and Analysis, 2020, 90:103512.
[50] DINH Q T, MUNOZ G, VO DUY S, et al.Analysis of sulfonamides, fluoroquinolones, tetracyclines, triphenylmethane dyes and other veterinary drug residues in cultured and wild seafood sold in Montreal, Canada[J].Journal of Food Composition and Analysis, 2020, 94:103630.
[51] JAMMOUL A, El DARRA N.Evaluation of antibiotics residues in chicken meat samples in Lebanon[J].Antibiotics, 2019, 8(2):69.
[52] HUA Y Y, YAO Q H, LIN J, et al.Comprehensive survey and health risk assessment of antibiotic residues in freshwater fish in southeast China[J].Journal of Food Composition and Analysis, 2022, 114:104821.
[53] 贾斌, 庾旸, 马海川, 等.我国长三角地区淡水池塘养殖水产品中抗生素残留及对人体暴露的贡献评价[J].农业环境科学学报, 2022, 41(2):238-245.
[54] 肖永华, 革丽亚, 粱高道, 等.湖北省鸡肉和鸡蛋中多组分抗生素残留分析[J].中国食品卫生杂志, 2022, 34(2):292-296.
[55] WANG Q, ZHAO W M.Optical methods of antibiotic residues detections:A comprehensive review[J].Sensors and Actuators B(Chemical), 2018, 269:238-256.
[56] BACANLI M, BAŞARAN N. Importance of antibiotic residues in animal food [J].Food and Chemical Toxicology, 2019, 125:462-466.
[57] BEN Y J, FU C X, HU M, et al.Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment:A review[J].Environmental Research, 2019, 169:483-493.
[58] MACLEAN R C, SAN MILLAN A.The evolution of antibiotic resistance[J].Science, 2019, 365:1082-1083.
[59] 吴利军, 何斌, 周源, 等.固相萃取-高效液相色谱法同时检测奶牛粪污中5种磺胺类抗生素[J].中国兽药杂志, 2020, 54(10):24-29.
[60] 杨艳伟, 朱会卷, 朱英, 等.化妆品中喹诺酮类和异喹啉类抗生素的高效液相色谱测定法[J].环境与健康杂志, 2012, 29(6):544-546.
[61] 陈晓燕, 周静峰, 施家威.基质分散固相萃取-高效液相色谱-可变波长检测法测定新鲜牛奶中8种抗生素[J].食品安全质量检测学报, 2021, 12(12):4812-4817.
[62] 范素素, 方烨渟, 蔡萌, 等.水环境中磺胺类抗生素固相萃取-液质联用检测方法的建立及效果评估[J].环境工程学报, 2022, 16(8):2764-2774.
[63] 中华人民共和国农业部, 农业部环境保护科研监测所.水产品中大环内酯类药物残留量的测定液相色谱-串联质谱法:GB/T 31660.1-2019[S].北京:中国标准出版社, 2019.
[64] 宫小明, 李凯, 许文娟, 等.棉签固相微萃取结合高效液相色谱-串联质谱法检测蜂蜜中9种大环内酯类抗生素[J/OL].(2023-06-06.
)[2023-06-28].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&filename=FXSY20230602008&dbname=CAPJLAST.
[65] JIN M K, WANG X, RUSSEL M, et al.Towards the rapid detection of multiple antibiotics in eggs by Surface-enhanced Raman spectroscopy coupled with hollow fiber micro-extraction[J].Microchemical Journal, 2022, 181:107743.
[66] OUYANG Y Z, WU H L, FANG H, et al.Rapid and simultaneous determination of three fluoroquinolones in animal-derived foods using excitation-emission matrix fluorescence coupled with second-order calibration method[J].Spectrochimica Acta Part A(Molecular and Biomolecular Spectroscopy), 2020, 224:117458.
[67] 黄翠萍, 黎杉珊, 陆杜鹃, 等.用于抗生素检测的纳米材料基电化学传感器研究进展[J].化学通报, 2021, 84(2):139-148.
[68] STEVENSON H S, SHETTY S S, THOMAS N J, et al.Ultrasensitive and rapid-response sensor for the electrochemical detection of antibiotic residues within meat samples[J].ACS Omega, 2019, 4(4):6324-6330.
[69] ZHOU B B, SHENG X X, XIE H, et al.Molecularly imprinted electrochemistry sensor based on AuNPs/RGO modification for highly sensitive and selective detection of nitrofurazone[J].Food Analytical Methods, 2023, 16:709-720.
[70] ZHAO C Y, PAN B F, WANG M Y, et al.Improving the sensitivity of nanofibrous membrane-based ELISA for on-site antibiotics detection[J].ACS Sensors, 2022, 7(5):1458-1466.
[71] 李长滨, 王钊, 刘文静, 等.荧光分光光度法测定蜜饯食品中二氧化硫残留量研究[J].中国调味品, 2022, 47(9):157-162.
[72] JIA Y C, CHENG Z, WANG G H, et al.Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples[J].Food Chemistry, 2023, 402:134245.
[73] YUE X Y, ZHOU Z J, LI M, et al.Inner-filter effect induced fluorescent sensor based on fusiform Al-MOF nanosheets for sensitive and visual detection of nitrofuran in milk[J].Food Chemistry, 2022, 367:130763.
[74] LI Y, WANG Y, DU P Y, et al.Fabrication of carbon dots@hierarchical mesoporous ZIF-8 for simultaneous ratiometric fluorescence detection and removal of tetracycline antibiotics[J].Sensors and Actuators B(Chemical), 2022, 358:131526.
[75] ABEDALWAF M A, LI Y, NI C F, et al.Colorimetric sensor arrays for the detection and identification of antibioticss[J].Analytical Methods, 2019, 11:2836-2854.
[76] HUANG W, ZHANG H Y, LAI G S, et al.Sensitive and rapid aptasensing of chloramphenicol by colorimetric signal transduction with a DNAzyme-functionalized gold nanoprobe[J].Food Chemistry, 2019, 270:287-292.
[77] XU C G, YING Y B, PING J F.Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification[J].Microchimica Acta, 2019, 186(7):448.
[78] LAVAEE P, DANESH N M, RAMEZANI M, et al.Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles[J].Microchimica Acta, 2017, 184(7):2039-2045.