[1] |
SCHNEIDER J,JIA H F,MUCKERMAN J T,et al.Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts[J].Chemical Society Reviews,2012,41(6):2036-2051.
|
[2] |
LOW J X,DAI B Z,TONG C J,et al.In situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J].Advanced Materials,2019,31(6):1802981.
|
[3] |
ZHANG S H,SHI J F,SUN Y,et al.Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide[J].ACS Catalysis,2019,9(5):3913-3925.
|
[4] |
ZHANG X B,HAN S B,ZHU B E,et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation[J].Nature Catalysis,2020,3(4):411-417.
|
[5] |
刘卫涛,张桂伟,平丹,等.聚苯胺基ZnFe-N-C的制备及其电还原CO2催化性能研究[J].轻工学报,2020,35(1):55-62.
|
[6] |
APPEL A M,BERCAW J E,BOCATSLY A B,et al.Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J].Chemical Reviews, 2013,113(8):6621-6658.
|
[7] |
PAN Y N,PASCHOALINO W J,BAYRAM S S,et al.Biosynthesized silver nanorings as a highly efficient and selective electrocatalysts for CO2 reduction[J].Nanoscale,2019,11(40):18595-18603.
|
[8] |
KWOK K S,WANG Y X,CAO M C,et al.Nano-folded gold catalysts for electroreduction of carbon dioxide[J].Nano Letters,2019,19(12):9154-9159.
|
[9] |
FENG Y,CHENG C Q,ZOU C Q,et al.Electroreduction of carbon dioxide in metallic nanopores through a pincer mechanism[J].Angewandte Chemie International Edition,2020,59(43):19459-19465.
|
[10] |
LYU W X,ZHOU J,BEI J J,et al.Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate[J].Applied Surface Science, 2017,393:191-196.
|
[11] |
CAO C,MA D D,GU J F,et al.Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J].Angewandte Chemie International Edition,2020,59(35):15014-15020.
|
[12] |
ZHANG B X,ZHANG J L,HUA M L,et al.Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets[J].Journal of the American Chemical Society,2020,142(31):13603-13613.
|
[13] |
JIAO J Q,LIN R,LIU S J,et al.Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J].Nature Chemistry,2019,11(3):222-228.
|
[14] |
ZHANG W,HUANG C Q,XIAO Q,et al.A typical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J].Journal of the American Chemical Society,2020,142(26):11417-11427.
|
[15] |
WANG Y X,SHEN H,KEN L,et al.Copper nanocubes for CO2 reduction in gas diffusion electrodes[J].Nano Letters,2019,19(12):8461-8648.
|
[16] |
MARTIC N,RELLER C,MACACAULEY C,et al.Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction[J].Advanced Energy Materials,2019,9(29):1901228.
|
[17] |
ZHENG X L,JI Y F,TANG J,et al.Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials[J].Nature Catalysis,2018,2(1):55-61.
|
[18] |
REN D,GAO J,PAN L F,et al.Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J].Angewandte Chemie International Edition,2019,58(42):15036-15040.
|
[19] |
WANG X,WANG Z Y,ARQUER F,et al.Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J].Nature Energy,2020,5(6):478-486.
|
[20] |
MANTHIRAM K,BEBEERWYCK B J,ALIVISATOS A P.Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst[J]. Journal of the American Chemical Society,2014,136(38):13319-13325.
|
[21] |
IYEBFAR P,HUANG J F,GREGORIO G L,et al.Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4[J].Chemical Communications,2019,55(60):8796-8799.
|
[22] |
LI Y F,CUI F,ROSS M B,et al.Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires[J].Nano Letters,2017,17(2):1312-1317.
|
[23] |
张钰宁,钮东方,胡硕真,等.基于纳米金属的增强效应在CO2电还原反应中的应用进展[J].电化学,2020,26(4):495-509.
|
[24] |
CHANG C J,LIN S C,CHEN H C,et al.Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane[J].Journal of the American Chemical Society,2020,142(28):12119-12132.
|
[25] |
KIM D,XIE C L,BECKNELL N,et al.Electrochemical activation of CO2through atomic ordering transformations of AuCu nanoparticles[J].Journal of the American Chemical Society,2017,139(24):8329-8336.
|
[26] |
SARAH L,DAVID M,JULIETTE B,et al.High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure[J].Joule,2020,4(2):395-406.
|
[27] |
ZHUANG G,CHEN Y,ZHUANG Z,et al.Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design[J].Science China Materials,2020,63(11):2089-2118.
|
[28] |
CHEN Y,KANAN M W.Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J].Journal of the American Chemical Society,2012,134(4):1986-1989.
|
[29] |
KANAN M W,LI C W.CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J].Journal of the American Chemical Society,2012,134(17):7231-7234.
|
[30] |
QIN R X,LIU P X,FU G,et al.Strategies for stabilizing atomically dispersed metal catalysts[J].Small Methods,2018,2(1):1700286.
|
[31] |
HAN Z,HU Q,CHENG Z,et al.High-performance overall CO2 splitting on hierarchical structured cobalt disulfide with partially removed sulfur edges[J].Advanced Functional Materials,2020,30(25):2000154.
|
[32] |
ZHUANG T T,LIANG Z Q,SEIFITOKALDANI A,et al.Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J].Nature Catalysis,2018,1(6):421-428.
|
[33] |
QIAO B T,WANG A Q,YANG X F,et al.Single-atom catalysis of CO oxidation using Pt1/FeO<i>x[J].Nature Chemistry,2011,3(8):634-641.
|
[34] |
JU W,BAGGER A,HAO G P,et al.Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J].Nature Communications,2017,8(1):944-952.
|
[35] |
PAN Y,SUN K A,LIU S J,et al.Core-shell ZIF-8@ZIF-67 derived CoP nanoparticles-embedded N-doped carbon nanotube hollow polyhedron for efficient over-all water splitting[J].Journal of the American Chemical Society,2018,140(7):2610-2618.
|
[36] |
朱红林,李文英,黎挺挺,等.CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J].化学进展,2019,31(7):939-953.
|
[37] |
XU C C,ZHI X,WANG D,et al.Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts[J].Small Structures,2020,2(1):2000058.
|
[38] |
ZHENG W Z,CHEN F, ZENG Q,et al.A universal principle to accurately synthesize atomically dispersed metal-N-4 sites for CO2electroreduction[J].Nano-Micro Letters,2020,12:108.
|
[39] |
JIN S,NI Y X,HAO Z M,et al.A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts[J].Angewandte Chemie International Edition,2020,59(49):2885-21889.
|
[40] |
LI X G,XI S B,SUN L B,et al.Isolated FeN4 sites for efficient electrocatalytic CO2 reduction[J].Advanced Science,2020,7(17):2001545.
|
[41] |
JIAO L,YANG W J,WAN G,et al.Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures[J].Angewandte Chemie International Edition,2020,59(46):20589-20595.
|
[42] |
FAN Q,HOU P F,CHIO C,et al.Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2[J].Advanced Energy Materials,2020,10(5):1903068.
|
[43] |
FENG J Q,GAO H S,ZHENG L R,et al.A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction[J].Nature Communications,2020,11(1):4341.
|
[44] |
GONG Y A,JIAO L,QIAN Y Y,et al.Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction[J].Angewandte Chemie-International Edition,2020,132(7):2727-2731.
|
[45] |
LI Z D,HE D,YAN X,et al.Size-dependent nickel-based electrocatalysts for selective CO2 reduction[J]. Angewandte Chemie-International Edition,2020,132(42):18731-18736.
|
[46] |
SHANG H S,WANG T,PEI J J,et al.Design of a single-atom indium (delta+)-N4 interface for efficient electroreduction of CO2 to formate[J].Angewandte Chemie International Edition,2020,59(50):22465-22469.
|
[47] |
JIANG Z L,WANG T,PEI J J,et al.Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency[J].Energy & Environmental Science,2020,13(9):2856-2863.
|
[48] |
WU S D,LYU X N,PIN D,et al.Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO[J].Electrochimica Acta,2020,340:135930.
|
[49] |
LU P L,YANG Y J,YAO J N,et al.Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction[J].Applied Catalysis B-Environmental,2019,241:113-119.
|
[50] |
GU J,HSU C S,BAI L C,et al.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J].Science,2019,364(6445):1091-1094.
|
[51] |
WANG X Q,CHEN Z,ZHAO X Y,et al.Regulation of coordination number over single Co sites:Triggering the efficient electroreduction of CO2[J].Angewandte Chemie International Edition,2018,130(7):1962-1966.
|
[52] |
彭奎霖,李桂林,江重阳,等.电解液调控CO2电催化还原性能微观机制的研究进展[J].高等学校化学学报,2022,43(7):20220238.
|
[53] |
HUANG Y J,CUI G K,ZHAO Y L,et al.Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J].Chemical Communications,2019,56(43):13293-13297.
|
[54] |
BJORN B,PRABUDDHA M,JOHN L H,et al.Vibrational sum-frequency generation study of the CO2 electrochemical reduction at Pt/EMIM-BF4 solid/liquid interfaces[J].Journal of Electroanalytical Chemistry,2017,800:144-150.
|
[55] |
CHU D B,QIN G X,YUAN X M,et al.Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution[J].ChemSusChem,2008,1(3):205-209.
|
[56] |
ASADI M,KUMAR B,BEHRANGINIA A,et al.Robust carbon dioxide reduction on molybdenum disulphide edges[J].Nature Communications,2014,5:4470.
|
[57] |
KANECO S,IIBA K,KATSUMATA H,et al.Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol[J].Journal of Solid State Electrochemistry,2007,11(4):490-495.
|
[58] |
SUN Z,MA T,TAO H,et al.Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J].Chem,2017,3(4):560-587.
|
[59] |
范佳,韩娜,李彦光.基于流动池的电化学二氧化碳还原研究进展[J].电化学,2020,26(4):510520.
|
[60] |
CHEM Z,ZHANG X,LIU W,et al.Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level[J].Energy & Environmental Science,2021,14:2349-2356.
|
[61] |
XU Y,EDWARDS J P,LIU S,et al.Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability[J].ACS Energy Letters,2021,6(2):809-815.
|
[62] |
ZHENG T T,JIANG K,TA N,et al.Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J].Joule,2019,3(1):265-278.
|