[1] QIAN S H,QIAO L N,XU W X,et al.An inner filter effect-based near-infrared probe for the ultrasensitive detection of tetracyclines and quinolones[J].Talanta,2019,194:598-603.
[2] YU L,CHEN H X,YUE J,et al.Metal-organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection[J].Analytical Chemistry,2019,91(9):5913-5921.
[3] 刘丁溪,杨杰程,周宏超,等.动物性食品中抗菌药物残留检测方法研究进展[J].中国畜牧兽医,2019,46(7):2183-2192.
[4] 王宏博,高雅琴,杜天庆,等.牛奶中抗生素残留的危害及检测方法的研究进展[J].畜牧与饲料科学,2010,31(4):158-160.
[5] 梁飞燕,卢日刚.动物源性食品中多兽药残留检测方法的研究进展[J].安徽农业科学,2016,44(26):50-51.
,68.
[6] 刘春龙,王成,郭禹.动物源性食品中兽药残留检测研究[J].农业与技术,2019,39(15):42-43.
[7] 程岁寒,潘存锋,张彦.高效液相色谱法在兽用抗生素残留分析中的应用[J].国外医药(抗生素分册),2019,40(1):37-41.
[8] 张小军,郑斌,李铁军,等.超高效液相色谱-串联四极杆质谱法测定水产品中氯霉素残留量[J].分析试验室,2010,29(6):115-118.
[9] 李兴华,苗俊杰,康凯,等.固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J].理化检验(化学分册),2019,55(7.
):769-777.
[10] 葛云芝,于小波,周光宏,等.高效液相色谱法同时测定鸡肉中3种四环素类抗生素残留[J].食品科学,2013,34(10):180-183.
[11] 刘红卫,周围,高黎红,等.超高效液相色谱:串联四极杆质谱法测定肠衣中氯霉素残留量[J].中国兽药杂志,2008,42(2):24-26.
[12] GUO X C,XIA Z Y,WANG H H,et al.Molecularly imprinted solid phase extraction method for simultaneous determination of seven nitroimidazoles from honey by HPLC-MS/MS[J].Talanta,2017,166:101-108.
[13] LU Z L Z,DENG F F,HE R,et al.A pass-through solid-phase extraction clean-up method for the determination of 11 quinolone antibiotics in chicken meat and egg samples using ultra-performance liquid chromatography tandem mass spectrometry[J].Microchemical Journal,2019,151:104213.
[14] VASILESCU A,MARTY J L.Electrochemical aptasensors for the assessment of food quality and safety[J].Trac-Trends in Analytical Chemistry,2016,79:60-70.
[15] MENG F W,MA X Y,DUAN N,et al.Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly[J].Talanta,2017,165:412-418.
[16] KIM S,LEE H J.Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay[J].Analytical Chemistry,2017,89(12):6624-6630.
[17] OUYANG Q,LIU Y,CHEN Q S,et al.Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor[J].Food Control,2017,81:156-163.
[18] JAFARI S,DEHGHANI M,NASIRIZADEH N,et al.Label-free electrochemical detection of Cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite[J].Measurement,2019,145:22-29.
[19] CHEN T W,RAJAJI U,CHEN S M,et al.Facile synthesis of copper (Ⅱ) oxide nanospheres covered on functionalized multiwalled carbon nanotubes modified electrode as rapid electrochemical sensing platform for super-sensitive detection of antibiotic[J].Ultrasonics Sonochemistry,2019,58:104596.
[20] JI W,YAO W R.Rapid surface enhanced Raman scattering detection method for chloramphenicol residues[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,144:125-130.
[21] 刘小桃.表面等离子体共振技术在环境污染物监测中的应用研究[J].低碳世界,2016(9):25-26.
[22] 张晨光,陈靖容,刘仁材,等.一种低成本的表面等离子体共振检测系统[J].仪表技术与传感器,2019(5):50-54.
[23] 李向丽,谭贵良,张娜,等.上转换发光纳米技术及其在食品安全检测中应用研究进展[J].现代食品科技,2014,30(8):280-287.
[24] SONG E Q,YU M Q,WANG Y Y,et al.Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk[J].Biosensors&Bioelectronics,2015,72:320-325.
[25] CHEN X K,ZHANG X D,XIA L Y,et al.One-step synthesis of ultrasmall and ultrabright organosilica nanodots with 100% photoluminescence quantum yield:Long-term lysosome imaging in living,fixed,and permeabilized cells[J].Nano Letters,2018,18(2):1159-1167.
[26] 徐龙华,方国臻,王硕.碳点荧光探针在食品检测中的应用[J].食品研究与开发,2017,38(12):192-196.
[27] WANG S,ZHANG Y J,PANG G S,et al.Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin a sensor[J].Analytical Chemistry,2017,89(3):1704-1709.
[28] DONG Y Q,CAI J H,XU Y,et al.Sensing applications of luminescent carbon based dots[J].The Analyst,2015,140(22):7468-7486.
[29] ZHANG Y,GAO Z Y,YANG X,et al.Highly fluorescent carbon dots as an efficient nanoprobe for detection of clomifene citrate[J].RSC Advances,2019,9(11):6084-6093.
[30] GOGOI S,DEVI R,DUTTA H S,et al.Ratiometric fluorescence response of a dual light emitting reduced carbon dot/graphene quantum dot nanohybrid towards As (Ⅲ)[J].Journal of Materials Chemistry C,2019,7(33):10309-10317.
[31] FU Y Z,HUANG L,ZHAO S J,et al.A carbon dot-based fluorometric probe for oxytetracycline detection utilizing a forster resonance energy transfer mechanism[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,246:118947.
[32] SHARMA N,YUN K.Dual sensing of tetracycline and L-Lysine using green synthesized carbon dots from Nigella sativa seeds[J].Dyes and Pigments,2020,182:108640.
[33] XUE J,LI N N,ZHANG D M,et al.One-step synthesis of a carbon dot-based fluorescent probe for colorimetric and ratiometric sensing of tetracycline[J].Analytical Methods,2020,12(42):5097-5102.
[34] XU X G,YANG Y,JIN H,et al.Fungal In situ assembly gives novel properties to CdS<i>xSe1-x quantum dots for sensitive label-free detection of chloramphenicol[J].ACS Sustainable Chemistry&Engineering, 2020, 8(17):6806-6814.
[35] REZAEI B,KHORASGANI F H,JAMEI H R,et al.Selective fluorescence determination of amoxicillin antibiotic based on inner filter effect of Glutathione-Capped@CdTe quantum dots with cobalt as a mediating agent[J].IEEE Sensors Journal,2019,19(14):5369-5375.
[36] HAN S,YANG L,WEN Z G,et al.A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline[J].Journal of Hazardous Materials,2020,398:122894.
[37] GAN Z Y,HU X T,XU X C,et al.A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples[J].Food Chemistry,2021,354:129501.
[38] XU N,ZHANG Q H,HOU B S,et al.A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe (Ⅲ) ions, pesticides, and antibiotics with high selectivity and sensitivity[J].Inorganic Chemistry,2018,57(21):13330-13340.
[39] TANG Y W,LI M,GAO X,et al.A NIR-responsive up-conversion nanoparticle probe of the NaYF4:Er,Yb type and coated with a molecularly imprinted polymer for fluorometric determination of enrofloxacin[J].Microchimica Acta,2017,184(9):3469-3475.
[40] LI H,SUN D E,LIU Y J,et al.An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer[J].Biosensors&Bioelectronics,2014,55:149-156.
[41] LI Y Y,DU Q Q,ZHANG X D,et al.Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu3+ fluorescence[J].Talanta,2020,206:120202.
[42] LIANG W J,LIU S P,LIU Z Q,et al.Electron transfer and fluorescence"turn-off"based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media[J].New Journal of Chemistry,2015,39(6):4774-4782.
[43] ZHANG N Z,ZHANG D W,ZHAO J,et al.Fabrication of a dual-emitting dye-encapsulated metal-organic framework as a stable fluorescent sensor for metal ion detection[J].Dalton Transactions,2019,48(20):6794-6799.
[44] WANG P L,XIE L H,OSEPH E A,et al.Metal-organic frameworks for food safety[J].Chemical Reviews,2019,119(18):10638-10690.
[45] WU X J,KONG F,ZHAO C Q,et al.Ratiometric fluorescent nanosensors for ultra-sensitive detection of mercury ions based on AuNCs/MOFs[J].The Analyst,2019,144(8):2523-2530.
[46] YANG Y,ZHAO L N,SUN M G,et al.Highly sensitive luminescent detection toward polytypic antibiotics by a water-stable and white-light-emitting MOF-76 derivative[J].Dyes and Pigments,2020,180:108444.
[47] YANG Y,LU L Q,TIAN X K,et al.Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters[J].Sensors and Actuators B:Chemical,2019,278:82-87.
[48] TAO Y,LI M Q,REN J S,et al.Metal nanoclusters:Novel probes for diagnostic and therapeutic applications[J].Chemical Society Reviews,2015,44(23):8636-8663.
[49] YANG X M,ZHU S S,DOU Y,et al.Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline[J].Talanta,2014,122:36-42.