[1] CDC.Prevalence and Most Common Causes of Disability Among Adults-United States, 2005[R].Atlanta:Morbidity and Mortality Weekly Report (MMWR),2009.
[2] Pond M J, Nuki G.Experimentally-induced osteoarthritis in the dog[J].Ann Rheum Dis,1973,32(4):387.
[3] Gregory M H, Capito N, Kuroki K, et al.A review of translational animal models for knee osteoarthritis[J].Arthritis,2012(2012):764621.
[4] Maroudas A, Muir H, Wingham J.The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage[J].Biochim Biophys Acta:General Subjects, 1969,177(3):492.
[5] Muir H, Bullough P, Maroudas A.The distribution of collagen in human articular cartilage with some of its physiological implications[J].J Bone Joint Surgery, 1970,52(3):554.
[6] Clarke I C.Articular cartilage:A review and scanning electron microscope study:1.The interterritorial fibrillar architecture[J].J Bone Joint Surgery,1971,53(4):732.
[7] Venn M, Maroudas A.Chemical composition and swelling of normal and osteoarthritic femoral head cartilage[J].Ann Rheum Dis, 1977,36(2):121.
[8] Franzen A, Inerot S, Hejderup S O, et al.Variations in the composition of bovine hip articular cartilage with distance from the articular surface[J].Biochem J,1981,195(3):535.
[9] Bayliss M T, Venn M, Maroudas A,et al.Structure of proteoglycans from different layers of human articular cartilage[J].Biochem J,1983,209(2):387.
[10] Volpi M, Katz E P.On the adaptive structures of the collagen fibrils of bone and cartilage[J].J Biomechanics, 1991,24(1):67.
[11] Maroudas A, Wachtel E J, Grushko G,et al.The effect of osmotic and mechanical pressures on water partitioning in articular cartialge[J].Biochim Biophys Acta, 1991,1073(2):285.
[12] Chen S S, Falcovitz Y H, Schneiderman R, et al.Depth-dependent compressive properties of normal aged human femoral head articular cartilage:relationship to fixed charge density[J].Osteoarthritis and Cartilage, 2001,9(6):561.
[13] Muller C, Khabut A, Dudhia J, et al.Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution[J].Matrix Biol,2014(40):34.
[14] Xia Y.Averaged and depth-dependent anisotropy of articular cartilage by microscopic imaging[J].Semin Arthritis Rheum,2008,37(5):317.
[15] Abragam A.The Principles of Nuclear Magnetism[M].Oxford:Clarendon Press, 1961.
[16] Slichter C P.Principles of Magnetic Resonance 3ED(Springer Series in Solid-state Sciences)[M].Berlin:Springer-Verlag,1992.
[17] Callaghan P.Principles of Nuclear Magnetic Resonance Microscopy[M].Oxford:Oxford University Press, 1991.
[18] Blümich B.Magnetic Resonance Microscopy:Methods and Application in Materials Science, Agriculture and Biomedicine[M].Weinheim:VCH, 1992.
[19] Xia Y.Contrast in NMR imaging and microscopy[J].Concepts in Magn Reson,1996,8(3):205.
[20] Fullerton G D, Cameron I L, Ord V A.Orientation of tendons in the magnetic field and its effect on T2 relaxation times[J].Radiology,1985,155(2):433.
[21] Henkelman R M, Stanisz G J, Kim J K, et al.Anisotropy of NMR properties of tissues[J].Magn Reson Med,1994,32(5):592.
[22] Xia Y, Farquhar T, Burton-Wurster N, et al.Origin of cartilage laminae in MRI[J].J Magn Reson Imaging,1997,7(5):887.
[23] Xia Y.Relaxation anisotropy in cartilage by NMR microscopy (μMRI) at 14 μm resolution[J].Magn Reson Med, 1998,39(6):941.
[24] Gründer W, Kanowski M, Wagner M, et al.Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy[J].Magn Reson Med, 2000,43(6):884.
[25] Gray M L, Burstein D, Xia Y.Biochemical (and functional) imaging of articular cartilage[J].Semin Musculoskelet Radiol, 2001,5(4):329.
[26] Nieminen M T, Rieppo J, Toyras J, et al.T2 relaxation reveals spatial collagen architecture in articular cartilage:A comparative quantitative MRI and polarized light microscopic study[J].Magn Reson Med, 2001,46(3):487.
[27] Trattnig S, Mlynarik V, Jung B, et al.Bilaminar pattern of tibial condyle cartilage layer on the fat-suppressed 3D gradient echo images:Artifact or structural and biochemical difference in composition of cartilage[J].Magn Reson Imaging, 2001,19(2):187.
[28] Liess C, Lusse S, Karger N, et al.Detection of changes in cartilage water content using MRI T2-mapping in vivo[J].Osteoarthritis and Cartilage, 2002,10(12):907.
[29] Yoshioka H, Haishi T, Uematsu T, et al.MR microscopy of articular cartilage at 1.5 T:Orientation and site dependence of laminar structures[J].Skeletal Radiol, 2002,31(9):505.
[30] Menezes N M, Gray M L, Hartke J R, et al.T2 and T1rho MRI in articular cartilage systems[J].Magn Reson Med, 2004,51(3):503.
[31] Xia Y, Zheng S, Bidthanapally A.Depth-dependent profiles of glycosaminoglycans in articular cartilage by μMRI and histochemistry[J].J Magn Reson Imaging, 2008,28(1):151.
[32] Alhadlaq H A, Xia Y.The structural adaptations in compressed articular cartilage by microscopic MRI (μMRI) T2 anisotropy[J].Osteoarthritis Cartilage, 2004,12(11):887.
[33] Alhadlaq H A, Xia Y.Modifications of orientational dependence of microscopic magnetic resonance imaging T2 anisotropy in compressed articular cartilage[J].J Magn Reson Imaging,2005, 22(5):665.
[34] Wang N, Chopin E, Xia Y.The effects of mechanical loading and gadolinium concentration on the change of T1 and quantification of glycosaminoglycans in articular cartilage by microscopic MRI[J].Phys Med Biol, 2013,58(13):4535.
[35] Alhadlaq H A, Xia Y, Moody J B, et al.Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic MRI and polarized light microscopy[J].Ann Rheum Dis, 2004,63(6):709.
[36] Gold G E, Han E, Stainsby J, et al.Musculoskeletal MRI at 3.0 T:Relaxation times and image contrast[J].American Journal of Roentgenology,2004,183(2):343.
[37] Regatte R R, Akella S V, Borthakur A, et al.Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage:comparison of T2 and T[J].Acad Radiol, 2002, 9(12):1388.
[38] Li X, Benjamin Ma C, Link T M, et al.In vivo T and T2 mapping of articular cartilage in ost eoarthritis of the knee using 3 T MRI[J].Osteoarthritis and Cartilage, 2007,15(7):789.
[39] Wang N, Xia Y.Depth and orientational dependencies of MRI T2 and T sensitivities towards trypsin degradation and Gd-DTPA2- presence in articular cartilage at microscopic resolution[J].Magn Reson Imaging, 2012,30(3):361.
[40] Wang N, Xia Y.Orientational dependent sensitivities of T2 and T towards trypsin degradation and Gd-DTPA2- presence in bovine nasal cartilage[J].Magnetic Resonance Materials in Physics:Biology and Medicine, 2012,25(4):297.
[41] Bennett H S.Methods Applicable to the Study of Both Fresh and Fixed Materials Themicroscopical Investigation of Biological Materials with Polarized Light[M].New York:Paul B Hoeber, 1950.
[42] Arokoski J P, Hyttinen M M, Lapveteläinen T, et al.Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarized light microscopy[J].Annals of the Rheumatic Diseases,1996,55(4):253.
[43] Oldenbourg R, Mei G.New polarized light microscope with precision universal compensator[J].Journal of Microscopy, 1995,180(2):140.
[44] Xia Y, Moody J B, Burton-Wurster N, et al.Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage[J].Osteoarthritis and Cartilage, 2001,9(5):393.
[45] Xia Y, Moody J B, Alhadlaq H, et al.Characteristics of topographical heterogeneity of articular cartilage over the joint surface of a humeral head[J].Osteoarthritis and Cartilage, 2002,10(5):370.
[46] Xia Y, Moody J B, Alhadlaq H,et al.Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution[J].Journal of Magnetic Resonance Imaging, 2003,17(3):365.
[47] Alhadlaq H A, Xia Y, Hansen F M, et al.Morphological changes in articular cartilage due to static compression:polarized light microscopy study[J].Connective Tissue Research, 2007,48(2):76.
[48] Xia Y, Alhadlaq H, Ramakrishnan N, et al.Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging[J].Journal of Structural Biology, 2008, 164(1):88.
[49] Burton-Wurster N, Todhunter R J, Lust G.Animal Models of Osteoarthritis[M].New York:Marcel Dekker, 1993.
[50] Hollander A P, Pidoux I, Reiner A,et al.Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration[J].Journal of Clinical Investigation,1995,96(6):2859.
[51] Buckwalter J A, Mankin H J.Articular cartilage:Degeneration and osteoarthritis, repair, regeneration, and transplantation[J].Instr Course Lect,1998,47:487.
[52] Rieppo J, Toyras J, Nieminen M T, et al.Structure-function relationships in enzymatically modified articular cartilage[J].Cells Tissues Organs, 2003,175(3):121.
[53] Rieppo J, Hyttinen M M, Halmesmaki E, et al.Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation[J].Osteoarthritis and Cartilage, 2009,17(4):448.
[54] Xia Y, Zheng S K, Szarko M, et al.Anisotropic properties of bovine nasal cartilage[J].Microscopy Research and Technique, 2012,75(3):300.
[55] Potter K, Kidder L H, Levin I W, et al.Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging[J].Arthritis and Rheumatism, 2001,44(4):846.
[56] Camacho N P, Torzilli P A, Mendelsohn R, et al.FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage[J].Biopolymers, 2001,62(1):1.
[57] West P A, Bostrom M P, Torzilli P A, et al.Fourier transform infrared spectral analysis of degenerative cartilage:An infrared fiber optic probe and imaging study[J].Applied Spectroscopy, 2004,58(4):376.
[58] David-Vaudey E, Burghardt A, Keshari K,et al.Fourier transform infrared imaging of focal lesions in human osteoarthritic cartilage[J].European Cells and Materials,2005(10):51.
[59] Bi X, Li G, Doty S B,et al.A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS)[J].Osteoarthritis and Cartilage, 2005,13(12):1050.
[60] Xia Y, Ramakrishnan N, Bidthanapally A.The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI)[J].Osteoarthritis and Cartilage,2007,15(7):780.
[61] Ramakrishnan N, Xia Y, Bidthanapally A.Polarized IR microscopic imaging of articular cartilage[J].Physica in Medicine and Biology,2007,52(15):4601.
[62] Ramakrishnan N, Xia Y, Bidthanapally A, et al.Determination of zonal boundaries in articular cartilage using infrared dichroism[J].Applied Spectroscopy, 2007,61(12):1404.
[63] Kim M, Bi X H, Horton W E, et al.Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage:histologic and biochemical correlations[J].J Biomed Opt,2005,10(3):031105.
[64] Marsh D, Schmitt F J, Muller M.Orientation of the infrared transition moments for an alpha-helix[J].Biophysical Journal, 2000,78(5):2499.
[65] Gadaleta S J, Landis W J, Boskey A L,et al.Polarized FT-IR microscopy of calcified turkey leg tendon[J].Connective Tissue Research,1996,34(3):203.
[66] Coats A M, Hukins D W L, Imrie C T, et al.Polarization artefacts of an FTIR microscope and the consequences for intensity measurements on anisotropic materials[J].Journal of Microscopy, 2003,211(1):63.
[67] West P A, Torzilli P A, Chen C, et al.Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation[J].Journal of Biomedical Optics,2005,10(1):014015.
[68] Xia Y, Moody J B, Alhadlaq H.Orientational dependence of T2 relaxation in articular cartilage:A microscopic MRI (μMRI) study[J].Magnetic Resonance in Medicine, 2002,48(3):460.
[69] Yin J H, Xia Y.Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression[J].Spectrochim Acta A Mol Biomol Spectrosc,2014,133:825.
[70] Yin J H, Xia Y.Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression[J].Applied Spectroscopy, 2010,64(11):1199.
[71] Yin J H, Xia Y, Lu M.Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression[J].Spectrochim Acta Part A:Molecular & Biomolecular Spectroscopy, 2012,88:90.
[72] Rieppo L, Rieppo J, Jurvelin J S, et al.Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage[J].PLoS One, 2012,7(2):32344.
[73] Rieppo L, Saarakkala S, Narhi T, et al.Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage[J].Osteoarthritis Cartilage,2012,20(5):451.
[74] Batiste D L, Kirkley A, Laverty S, et al.High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis[J].Osteoarthritis and Cartilage, 2004,12(8):614.
[75] Van Lenthea G H, Hagenmuller H, Bohnerd M, et al.Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo[J].Biomaterials, 2007,28(15):2479.
[76] Palmer A W, Guldberg R E, Levenston M E.Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography[J].Proceeding of National Academy of Sciences of USA,2006,13(51):19255.
[77] Cockman M D, Blanton C A, Chmielewski P A, et al.Quantitative imaging of proteoglycan in cartilage using a gadolinium probe and microCT[J].Osteoarthritis and Cartilage, 2006,14(3):210.
[78] Kallioniemi A S, Jurvelin J S, Nieminen M T, et al.Contrast agent enhanced pQCT of articular cartilage[J].Physics in Medicine and Biology,2007, 52(4):1209.
[79] Taylor C, Carballido-Gamio J, Majumdar S, et al.Comparison of quantitative imaging of cartilage for osteoarthritis:T2, T, dGEMRIC and contrast-enhanced computed tomography[J].Magn Reson Imaging,2009,27(6):779.
[80] Xie L, Lin A S, Levenston M E, et al.Quantitative assessment of articular cartilage morphology via EPIC-microCT[J].Osteoarthritis and Cartilage,2009,17(3):313.
[81] Silvast T S, Jurvelin J S, Aula A S, et al.Contrast agent-enhanced computed tomography of articular cartilage:association with tissue composition and properties[J].Acta Radiologica,2009,50(1):78.
[82] Joshi N S, Bansal P N, Stewart R C, et al.Effect of contrast agent charge on visualization of articular cartilage using computed tomography:exploiting electrostatic interactions for improved sensitivity[J].Journal of the American Chemical Society,2009,131(37):13234.
[83] Xia Y, Oravec D, Mittelstaedt D, et al.Depth-dependent lon concentrations in healthy and lesioned articular cartilage by μCT and μMRI[C]//57th Conference of Orthopaedic Research Society,California:Long Beach,2011.
[84] Bansal P N, Joshi N S, Entezari V, et al.Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage[J].Journal of Orthopaedic Research,2011,29(5):704.
[85] Hunter D J, Zhang Y, Niu J, et al.Increase in bone marrow lesions associated with cartilage loss:A longitudinal magnetic resonance imaging study of knee osteoarthritis[J].Arthritis and Rheum,2006,54(5):1529.
[86] Xu L, Hayashi D, Roemer F W, et al.Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis[J].Semin in Arthritis and Rheum,2012,42(2):105.
[87] Bullough P, Goodfellow J.The significance of the fine structure of articular cartilage[J].Journal of Bone and Joint Surgery:British Volume, 1968, 50(4):852.
[88] Weiss C, Rosenberg L, Helfet A J.An ultrastructural study of normal young adult human articular cartilage[J].Journal of Bone and Joint Surgery,1968,50(4):663.
[89] Minns R J, Steven F S.The collagen fibril organization in human articular cartilage[J].Journal of Anatomy,1977,123(2):437.
[90] Poole C A, Flint M H, Beaumont B W.Morphological and functional interrelationships of articular cartilage matrices[J].Journal of Anatomy,1984,138(1):113.
[91] Eggli P S, Herrmann W, Hunziker E B, et al.Matrix compartments in the growth plate of the proximal tibia of rats[J].The Anatomical Record,1985, 211(3):246.
[92] Clark J M.The organisation of collagen fibrils in the superficial zones of articular cartilage[J].Journal of Anatomy,1990,171:117.
[93] Chen M H, Broom N D.Concerning the ultrastructural origin of large-scale swelling in articular cartilage[J].Journal of Anatomy,1999,194(3):445.
[94] Xia Y, Elder K.Quantification of the graphical details of collagen fibrils in transmission electron micrographs[J].Journal of Microscopy, 2001, 204(1):3.
[95] Szarko M, Xia Y.Direct visualisation of the depth-dependent mechanical properties of full-thickness articular cartilage[J].Open Journal of Orthopedics, 2012, 2(2):34.
[96] Xia Y.Resolution ‘scaling law’ in MRI of articular cartilage[J].Osteoarthritis and Cartilage,2007,15(4):363.
[97] Hayashi D, Guermazi A, Hunter D J.Osteoarthritis year 2010 in review:imaging[J].Osteoarthritis and Cartilage, 2011,9(4):354.