[1] MCKEOWN N,ANDERSON T,BALAKRISHNAN H,et al.OpenFlow:Enabling innovation in campus networks[J].ACM SIGCOMM Computer Communication Review,2008,38(2):69.
[2] 吴艳.基于流量分类的智能SDN路由优化技术研究[D].杭州:浙江工商大学,2019.
[3] 胡孟婷.SDN网络流量态势评估及预测技术研究[D].成都:电子科技大学,2019.
[4] 刘佳美,徐巧枝.基于机器学习的SDN网络流量预测与部署策略[J/OL].计算机工程:1-7[2020-03-16.
].https://doi.org/10.19678/j.issn.1000-3428.0056436.
[5] MOORE A W,PAPAGIANNAKI K.Toward the accurate identification of network applications[C]//Proceedings of International Workshop on Passive and Active Network Measurement.Heidelberg:Springer,2005:41.
[6] 彭芸,刘琼.Internet流分类方法的比较研究[J].计算机科学,2007(8):58.
[7] SEN S,SPATSCHECK O,WANG D.Accurate,scalable in-network identification of p2p traffic using application signatures[C]//Proceedings of the Web Conference.Manhattan:[s.n.],2004:512.
[8] NGUYEN T T T,ARMITAGE G.Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world ip networks[C]//Proceedings of 2006 31st IEEE Conference on Local Computer Networks.Piscataway:IEEE,2006:369.
[9] BERNAILLE L,TEIXEIRA R.Early recognition of encrypted applications[C]//Proceedings of International Conference on Passive and Active Network Measurement.Heidelberg:Springer,2007:165.
[10] 吴辉.基于模糊K-Means的网络流分类系统研究与实现[D].广州:广东工业大学,2016.
[11] LI J,ZHANG S,LU Y,et al.Real-time P2P traffic identification[C]//Proceedings of 2008 IEEE Global Telecommunications Conference.Piscataway:IEEE,2008:1.
[12] QUINLAN J R.C4.5:Programs for machine learning[M].Amsterdam:Elsevier,2014.
[13] 李平红,王勇,陶晓玲.支持向量机的半监督网络流量分类方法[J].计算机应用,2013,33(6):33.
[14] 何建涛.SDN中基于机器学习的DDoS攻击检测与防御方法研究[D].合肥:安徽大学,2019.
[15] 李兆斌,韩禹,魏占祯,等.SDN中基于机器学习的网络流量分类方法研究[J].计算机应用与软件,2019,36(5):75.
[16] 王赋翼.机器学习在流量分类中的应用[D].成都:电子科技大学,2019.
[17] HAN H,WANG W Y,MAO B H.Borderline-SMOTE:A new over-sampling method in imbalanced data sets learning[C]//Proceedings of International Conference on Intelligent Computing.Heidelberg:Springer,2005:878.
[18] 张龙璨,柳斌,李芝棠.机器学习分类下网络流量的特征选取[J].广西大学学报(自然科学版),2011,36(S1):6.