[1] |
GBYLIK-SIKORSKA M, POSYNIAK A, SNIEGOCKI T, et al. Liquid chromatographytandem mass spectrometry multiclass method for the determination of antibiotics residues in water samples from water supply systems in food-producing animal farms[J]. Chemosphere,2015, 119:8.
|
[2] |
BARAN W, ADAMEK E, ZIEMIA ŃSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011,196(30):1.
|
[3] |
SUN Q,LI M Y,MA C,et al. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China[J]. Environmental Pollution, 2016,208:371.
|
[4] |
LIN A Y,YU T,LATEEF S K. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan[J]. Journal of Hazardous Materials, 2009,167(1/2/3):1163.
|
[5] |
BU Q W,WANG B,HUANG J,et al. Pharmaceuticals and personal care products in the aquatic environment in China:a review[J]. Journal of Hazardous Materials,2013,262(15):189.
|
[6] |
LI S,SHI W Z,LIU W,et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016)[J]. Science of the Total Environment,2018,615(15):906.
|
[7] |
SONG Y L, GAO S S, TIAN J Y, et al. Construction of Ag/TiO2 composites with uniformsized Ag nanoparticles and the application for sulfisoxazole degradation in the presence of visible radiation[J]. Journal of Environmental Chemical Engineering,2020,8(5):104390.
|
[8] |
宋亚丽. TiO2基可见光催化剂降解水中典型磺胺类抗生素的研究[D]. 哈尔滨:哈尔滨工业大学,2018.
|
[9] |
康蓓蓓,冉全,潘丽丽,等. 紫外光活化过硫酸盐降解磺胺甲嘧啶[J]. 山东化工,2018,47(2):27.
|
[10] |
张嘉凝,何静,蔡言安,等. 不同混凝剂对四环素及磺胺甲基嘧啶的吸附性能[J]. 青岛理工大学学报,2020,41(4):64.
|
[11] |
SONG Y L,HUANG L,ZHANG X J,et al. Synergistic effect of persulfate and TiO2 under simulated solar light irradiation:Implication for the degradation of sulfamethoxazole[J]. Journal of Hazardous Materials,2020,393(5):122379.
|
[12] |
宋亚丽,张肖静,朱艺博,等. Ag/TiO2可见光催化技术降解水中磺胺嘧啶的研究[J]. 轻工学报,2019,34(6):72.
|
[13] |
SONG Y L,TIAN J Y,GAO S S,et al. Photodegradation of sulfonamides by TiO2 under visible light irradiation:effectiveness, mechanism and pathways[J]. Applied Catalysis B:Environmental,2017,210:86.
|
[14] |
DEHGHAN S, JAFARI A J, FARZADKIA M, et al. Visible-light-driven photocatalytic degradation of metalaxyl by reduced graphene oxide/Fe3O4/ZnO ternary nanohybrid:influential factors, mechanism and toxicity bioassay[J]. Journal of Photochemistry and Photobiology A:Chemistry,2019,375(15):280.
|
[15] |
EGHBALI P, HASSANI A, SÜNDÜ B, et al. Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpTiO2):preparation, characterization and catalytic performance[J]. Journal of Molecular Liquids, 2019, 290(15):111208.
|
[16] |
WANG J,YANG Z,GAO X X,et al. Core-shell TiO2@ZnO composites as photoanodes with double synergistic effects for enhanced visiblelight photoelectrocatalytic activities[J]. Applied Catalysis B:Environmental,2017,217:169.
|
[17] |
ZHANG Y W, LIU J H, WU G, et al. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J]. Nanoscale,2012,4(17):5300.
|
[18] |
YANG Y X,GUO Y N,LIU F Y,et al. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst[J]. Applied Catalysis B:Environmental, 2013, 142/143:828.
|
[19] |
SHAN G Y,HAO H W,WANG X M,et al. The effect of PVP on the formation and optical properties ZnO/Ag nanocomposites[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,405(5):1.
|
[20] |
WANG Q,WANG W,ZHONG L L,et al. Oxygen vacancy-rich 2D/2D BiOCl-TiO2 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation[J]. Applied Catalysis B:Environmental,2018,220:290.
|
[21] |
PALIWAL M K,MEHER S K. 3D-heterostructured NiO nanofibers/ultrathin TiO2 holey nanosheets:an advanced electrode material for all-solid-state asymmetric supercapacitors with multi-fold enhanced energy density[J]. Electrochimica Acta,2020,358:136871.
|
[22] |
HE Q C, ZHOU F, ZHAN S, et al. Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified mpTiO2 composites[J]. Applied Surface Science,2017,391:423.
|
[23] |
LIU N Y, HAN M M, SUN Y, et al. ATiO2 based photoelectrochemical cell using O2/H2O redox couples[J]. Energy & Environmental Science,2018,11(7):1841.
|
[24] |
HOU W B, CRONIN S B. A review of surface plasmon resonance-enhanced photocatalysis[J]. Advanced Functional Materials, 2013,23(13):1612.
|
[25] |
SONG Y L,QI J Y,TIAN J Y,et al. Construction of Ag/TiO2 photocatalysts with visiblelight photocatalytic activity for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2018,341(1):547.
|