[1] |
吕飞,马帅旭,杨剑锋.烟草行业制造过程质量风险来源探析[J].现代企业文化,2011(3):112-113.
|
[2] |
田芳,赵光辉.中国智能制造实证研究:以烟草产业为例[J].中国市场,2018(19):7-11.
|
[3] |
郑贞珍.提升烟草行业智慧治理效能推进行业高质量发展的策略分析[J].经济管理,2023(7):51-54.
|
[4] |
郭庆梅,于恒力,王中训,等.基于卷积神经网络的图像分类模型综述[J].电子技术应用,2023,49(9):31-38.
|
[5] |
付永民,范磊,李长进,等.基于计算机视觉与机器学习的烟丝杂质图像级联检测方法[J].轻工学报,2023,38(4):113-121.
|
[6] |
LU M Y,JIANG S W,WANG C,et al.Tobacco leaf grading based on deep convolutional neural networks and machine vision[J].Journal of the ASABE,2022,65(1):11-22.
|
[7] |
谢裕睿,苗晟,张铄,等.基于残差神经网络的烟草病害识别研究[J].现代计算机,2020(30):27-31.
|
[8] |
NIU Q F,LIU J P,JIN Y,et al.Tobacco shred varieties classification using Multi-Scale-X-ResNet network and machine vision[J].Frontiers in Plant Science,2022,13:962664.
|
[9] |
李海燕,李郸,马慧宇,等.基于改进深度学习模型IRCNN的卷烟真伪鉴别[J].计算技术与自动化,2023,42(1):188-192.
|
[10] |
WANG C Y,ZHAO J L,YU Z C,et al.Real-time foreign object and production status detection of tobacco cabinets based on deep learning[J].Applied Sciences,2022,12(20):10347.
|
[11] |
HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:770-778.
|
[12] |
IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].JMLR,2015,37:448-456.
|
[13] |
HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:7132-7141.
|
[14] |
WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[M].Berlin:Springer International Publishing,2018:3-19.
|
[15] |
于营,杨婷婷,杨博雄.混淆矩阵分类性能评价及Python实现[J].现代计算机,2021(20):70-73,79.
|