[1] ZHAO T T, CHEN Q, WEN Y L, et al.A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy[J].Food Chemistry, 2022, 377:132072.
[2] 程岁寒, 潘存锋, 张彦.高效液相色谱法在兽用抗生素残留分析中的应用[J].国外医药(抗生素分册), 2019, 40(1):27-41.
[3] 陈燕, 李康柏, 许均图, 等.液相色谱串联质谱法检测水产品中17种抗生素残留量[J].现代食品, 2021(9):201-204.
[4] 李兴华, 苗俊杰, 康凯, 等.固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J].理化检验(化学分册), 2019, 55(7):769-777.
[5] LI R, WEN Y, YANG L, et al.Development of an enzyme-linked immunosorbent assay based on viral antigen capture by anti-spike glycoprotein monoclonal antibody for detecting immunoglobulin a antibodies against porcine epidemic diarrhea virus in milk[J].BMC Veterinary Research, 2023, 19(1):1-11.
[6] 杨亚琴, 冯书惠, 胡永建, 等.气相色谱-质谱法测定绿茶中草甘膦和氨甲基膦酸残留量[J].茶叶科学, 2020, 40(1):125-132.
[7] YU M K, XIE Y, WANG X Y, et al.Highly water-stable dye@Ln-MOFs for sensitive and selective detection toward antibiotics in water[J].ACS Applied Materials and Interfaces, 2019, 11(23):21201-21210.
[8] TIAN L, ZHANG Y, WANG L B, et al.Ratiometric dual signal-enhancing-based electrochemical biosensor for ultrasensitive kanamycin detection[J].ACS Applied Materials and Interfaces, 2020, 12(47):52713-52720.
[9] ZHOU C, ZOU H M, SUN C, et al.Recent advances in biosensors for antibiotic detection:Selectivity and signal amplification with nanomaterials[J].Food Chemistry, 2021, 361(3):130109.
[10] HUANG W, ZHOU Y, ZHAN D Y, et al.Homogeneous biorecognition reaction-induced assembly of DNA nanostructures for ultrasensitive electrochemical detection of kanamycin antibiotic[J].Analytica Chimica Acta, 2021, 1154:338317.
[11] LI M X, CHENG J, YUAN Z Y, et al.Sensitive electrochemical detection of microRNA based on DNA walkers and hyperbranched HCR-DNAzyme cascade signal amplification strategy[J].Sensors and Actuators B:Chemical, 2021, 345:130348.
[12] LEI C, JLABC F, CHEN C D, et al.Dual-signal amplification electrochemical sensing for the sensitive detection of uranyl ion based on gold nanoparticles and hybridization chain reaction-assisted synthesis of silver nanoclusters[J].Analytica Chimica Acta, 2021, 1184:338986.
[13] CHOWDHURY S, WANG J, NUCCIO S P, et al.Short LNA-modified oligonucleotide probes as efficient disruptors of DNA G-quadruplexes [J].Nucleic Acids Research, 2022, 50(13):7247-7259.
[14] CHEN Y, QIU D H, ZHANG X B, et al.Highly sensitive biosensing applications of a magnetically immobilizable covalent G-quadruplex-hemin DNAzyme catalytic system[J].Analytical Chemistry, 2022, 94(4):2212-2219.
[15] HASHKAVAYI A B, RAOOF J B, PARK K S.Sensitive electrochemical detection of tryptophan using a hemin/G-quadruplex aptasensor[J].Chemosensors, 2020, 8(4):100.
[16] SONG K M, CHO M, JO H, et al.Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer[J].Analytical Biochemistry, 2011, 415(2):175-181.
[17] ÉCIJA-ARENAS Á, KIRCHNER E M, HIRSCH T, et al.Development of an aptamer-based SPR-biosensor for the determination of kanamycin residues in foods[J].Analytica Chimica Acta, 2021, 1169:338631.
[18] LIU M, YANG Z Q, LI B X, et al.Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk[J].Food Chemistry, 2021, 339:128059.
[19] DENG J K, LIU Y Q, LIN X D, et al.A ratiometric fluorescent biosensor based on cascaded amplification strategy for ultrasensitive detection of kanamycin[J].Sensors and Actuators, 2018, 273:1495-1500.
[20] GENG H C, CHEN X X, SUN L L, et al.ZnCuInSe/Au/TiO2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin[J].Analytica Chimica Acta, 2020, 1146:166-173.
[21] WANG L N, ZHANG L, YU Y, et al.DNA cyclic assembling control in an electrochemical strategy with MoS2@AuNPs for determination of kanamycin [J].Microchimica Acta, 2021, 188(8):1-9.