[1] |
ZHANG S Y,WANG L,SHIN S H,et al.Common fixed point theorems for a pair of orbitally contraction mapping[J]. Fixed Point Theory and Applictions,2003,5:191.
|
[2] |
张树义,林媛.φ-φ-型压缩映象不动点的存在性[J].北华大学学报(自然科学版),2016,17(1):1.
|
[3] |
丛培根,张芯语,张树义.Altman型轨道压缩映象的不动点定理[J].南阳师范学院学报,2018,17(1):1.
|
[4] |
郑晓迪,万美玲,张树义.轨道压缩映射的几个新的不动点定理[J].北华大学学报(自然科学版),2014,15(4):438.
|
[5] |
ALTMAN M.An integral test for series and generalized contractions[J].Amer MathMonthly,1975,82(8):827.
|
[6] |
CARBONE A,SINGH S P.Fixed point theorems for Altman type mappings[J].Indian J Pure Appl Math,1987,18(12):1082.
|
[7] |
LI Y,GU F.Common fixed point theorem of Altman integral type mapping[J].The Journal of Nonlinear Sciences and Applications,2009(2):214.
|
[8] |
刘泽庆.关于Altman型映象的公共不动点定理[J].辽宁师范大学学报(自然科学版),1993,16(1):1.
|
[9] |
张树义.Altman型映象的公共不动点定理[J].烟台师范学院学报(自然科学版),2000,16(2):95.
|
[10] |
谷峰,邓波.关于Altman型映象的公共不动点定理[J].哈尔滨师范大学学报(自然科学版),2001,17(5):44.
|
[11] |
赵美娜,张树义,郑晓迪.Ciric-Altman型映射的不动点定理[J].西华大学学报(自然科学版),2016,35(6):79.
|
[12] |
丛培根,张芯语,张树义.概率度量空间中一类平方型映象的公共不动点定理与泛函方程组解的存在性[J].轻工学报,2018,33(4):101.
|
[13] |
张树义,赵美娜,丛培根.模糊度量空间中压缩型映象不动点定理及应用[J].南通大学学报(自然科学版),2017,16(3):66.
|
[14] |
万美玲,张树义,郑晓迪.2-距离空间中非唯一不动点定理[J].轻工学报,2017,32(4):105.
|
[15] |
丛培根,聂辉,张树义.具有n元点组的非线性压缩映象的不动点定理[J].北华大学学报(自然科学版),2018,19(4):436.
|