[1] YOUNG S,WONG M,TABATA Y,et al.Gelatin as a delivery vehicle for the controlled release of bioactive molecules[J].Journal of Controlled Release,2005,109(1/3):256.
[2] ELZOGHBY A O,SAMY W M,ELGINDY N A.Protein-based nanocarriers as promising drug and gene delivery systems[J].Journal of Controlled Release,2012,161(1):38.
[3] WANG H,BOERMAN O C,SARⅡBRAHIMOGLU K,et al.Comparison of micro-vs.nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins:Bone morphogenetic protein-2 and alkaline phosphatase[J].Biomaterials,2012,33(33):8695.
[4] BHAT R,KARIM A A.Ultraviolet irradiation improves gel strength of fish gelatin[J].Food Chemistry,2009,113(4):1160.
[5] LIGUORI A,BIGI A,COLOMBO V,et al.Atmospheric pressure non-equilibrium plasma as a green tool to crosslink gelatin nanofibers[J].Scientific Reports,2016,6:38542.
[6] SILVA M A D,KANG J,BUI T T T,et al.Tightening of gelatin chemically crosslinked networks assisted by physical gelation[J].Journal of Polymer Science B Polymer Physics,2017,55(24):1850.
[7] NADZIR M M,MUN L S,CHAN P J.Characterization of genipin-crosslinked gelatin hydrogel loaded with curcumin[J].Journal of Engineering and Applied Sciences,2017,12(9):2294.
[8] THI P L,LEE Y,DAI H N,et al.In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness[J].Journal of Materials Chemistry B,2016,5(4):757.
[9] MYUNG D,WATERS D,WISEMAN M,et al.Progress in the development of interpenetrating polymer network hydrogels[J].Polymers for Advanced Technologies,2008,19(6):647.
[10] SPERLING L H.Interpenetrating polymer networks and related materials[J].Chemistry & Properties of Crosslinked Polymers,1981,12(1):141.
[11] SPERLING L H,CHIU T W,HARTMAN C P,et al.Latex interpenetrating polymer networks[J].Angewandte Chemie International Edition,1978,17(2):149.
[12] HOFFMAN A S.Hydrogels for biomedical applications[J].Advanced Drug Delivery Reviews,2012,64:18.
[13] SHEN C,LI Y,WANG H,et al.Mechanically strong interpenetrating network hydrogels for differential cellular adhesion[J].Rsc Advances,2017,7(29):18046.
[14] WANG J,WEI J.Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings[J].Materials Science & Engineering C,2017,80:460.
[15] SHEN Z S,CUI X,HOU R X,et al.Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering[J].Rsc Advances,2015,5(69):55640.
[16] YU Z,ZHANG Y,GAO Z J,et al.Enhancing mechanical strength of hydrogels via IPN structure[J].Journal of Applied Polymer Science,2016,134(8):44503.
[17] PETTIGNANO A,HARING M,BERNARDI L,et al.Self-healing alginate-gelatin biohydrogels based on dynamic covalent chemistry:elucidation of key parameters[J].Materials Chemistry Frontiers,2017,1(1):73.
[18] GAN Y,LI P,WANG L,et al.An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration[J].Biomaterials,2017,136:12.
[19] ZHANG J,WANG J,ZHANG H,et al.Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration[J].Biomed Mater,2016,11(3):035014.
[20] MIAO T,MILLER E J,MCKENZIE C,et al.Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration[J].Journal of Materials Chemistry B,2015,3(48):9242.
[21] ZHANG Z,LIU Y,CHEN X,et al.Multi-responsive polyethylene-polyamine/gelatin hydrogel induced by non-covalent interactions[J].Rsc Advances,2016,6(54):48661.
[22] 王茹,王永鑫,陈重一.不同体系的双网络水凝胶及其增强机理[J].材料导报,2015,29(23):41.
[23] GONG J P,KATSUYAMA Y,KUROKAWA T,et al.Double-network hydrogels with extremely high mechanical strength[J].Advanced Materials,2003,15(14):1155.
[24] HOU J,REN X,GUAN S,et al.Rapidly recoverable,anti-fatigue,super-tough double-network hydrogels reinforced by macromolecular microspheres[J].Soft Matter,2017,13(7):1357.
[25] YAN X,CHEN Q,ZHU L,et al.High strength and self-healable gelatin/polyacrylamide double network hydrogels[J].Journal of Materials Chemistry B,2017,5(37):7683.
[26] SANTIN M,HUANG S J,IANNACE S,et al.Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer[J].Biomaterials,1996,17(15):1459.
[27] HARAGUCHI K,TAKADA T.Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organic-inorganic network structure[J].Macromolecular Chemistry & Physics,2005,206(15):1530.
[28] HARAGUCHI K,TORU TAKERHISA A,FAN S.Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay[J].Macromolecules,2002,35(27):10162.
[29] HARAGUCHI K.Nanocomposite hydrogels[J].Current Opinion in Solid State & Materials Science,2007,11(3):47.
[30] GAHARWAR A K,PEPPAS N A,KHADEMHOSSEINI A.Nanocomposite hydrogels for biomedical applications[J].Biotechnol Bioeng,2014,111(3):441.
[31] LI C,MU C,LIN W,et al.Gelatin effects on the physicochemical and hemocompatible properties of gelatin/PAAm/Laponite nanocomposite hydrogels[J].ACS Appl Mater Interfaces,2015,7(33):18732.
[32] RAN J,JIANG P,LIU S,et al.Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering[J].Materials Science and Engineering C,2017,78:130.
[33] GARCIAASTRAIN C,CHEN C,BURON M,et al.Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles[J].Biomacromolecules,2015,16(4):1301.
[34] BARBUCCI R,PASQUI D,GIANI G,et al.A novel strategy for engineering hydrogels with ferromagnetic nanoparticles as crosslinkers of the polymer chains.Potential applications as a targeted drug delivery system[J].Soft Matter,2011,7(12):5558.
[35] DEMARCHI C A,DEBRASSI A,BUZZI F C,et al.A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery:synthesis,characterization and in vitro drug release[J].Soft Matter,2014,10(19):3441.
[36] GAHARWAR A K,PEPPAS N A,KHADEMHOSSEINI A.Nanocomposite hydrogels for biomedical applications[J].Biotechnology & Bioengineering,2014,111(3):441.
[37] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Materials and methods:electric field effect in atomically thin carbon films[J].Science,2004(306):666.
[38] CHUNG C,KIM Y K,SHIN D,et al.Biomedical applications of graphene and graphene oxide[J].Accounts of Chemical Research,2013,46(10):2211.
[39] COMPTON O C,CRANFORD S W,PUTZ K W,et al.Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding[J].Acs Nano,2012,6(3):2008.
[40] SOLDANO C,MAHMOOD A,DUJARDIN E.Production,properties and potential of graphene[J].Carbon,2010,48(8):2127.
[41] WEI P,BAO W,PU Y,et al.Anomalous thermoelectric transport of dirac particles in graphene[J].Physical Review Letters,2009,102(16):166808.
[42] ZHU J,CHEN M,HE Q,et al.An overview of the engineered graphene nanostructures and nanocomposites[J].Rsc Advances,2013,3(45):22790.
[43] HUANG J,ZHAO L,WANG T,et al.NIR-Triggered rapid shape memory PAM-GO-Gelatin hydrogels with high mechanical strength[J].Acs Applied Materials & Interfaces,2016,8(19):12384.
[44] PIAO Y,CHEN B.One-pot synthesis and characterization of reduced graphene oxide-gelatin nanocomposite hydrogels[J].Rsc Advances,2016,6(8):6171.
[45] HASSANZADEH P,KAZEMZADEHNARBAT M,ROSENZWEIG R,et al.Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA)[J].J Mater Chem B Mater Biol Med,2016,4(15):2539.
[46] NAN L,WEI C,CHEN G,et al.Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength[J].Carbohydrate Polymers,2017,171:77.