[1] 付阶辉.基于Petri网的故障诊断方法研究[D].南京:东南大学,2004.
[2] 张润林.旋转机械故障机理与诊断技术[M].北京:机械工业出版社,2002.
[3] 李舜酩,郭海东,李殿荣.振动信号处理方法综述[J].仪器仪表学报,2013,34(8):1907.
[4] WANG J,MA Y,ZHANG L,et al.Deep learning for smart manufacturing:methods and applications[J].Journal of Manufaturing Systems,2018(48):144.
[5] MATEO C,TALAVERA J.Short-time Fourier transform with the window size fixed in the frequency domain[J]. Digital Signal Processing,2018(77):13.
[6] YANG Z J,YANG L H,QING C M.An oblique-extrema-based approach for empirical mode decomposition[J].Digital Signal Processing,2010(20):699.
[7] ZHANG K,GENCAY R,YAZGAN M.Application of wavelet decomposition in time-series forecasting[J].Economics Letters,2017(158):41.
[8] VAUTRIN D,ARTUSI X,LUCAS M,et al.A novel criterion of wavelet packet best basis selection for signal classification with application to brain-computer interfaces[J].IEEE Transactions on Biomedical Engineering,2009,56(11):2734.
[9] QIN Y.A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis[J].IEEE Transactions on Industrial Electronics,2018,65(3):2716.
[10] DING X,HE Q.Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J].IEEE Transactions on Instrumentation and Measurement,2017,66(8):1926.
[11] 张建宇,李文斌,张随征,等.多小波自适应阈值降噪在故障诊断中的应用[J].北京工业大学学报,2013,39(2):166.
[12] 赵元喜,胥永刚,高立新,等.基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J].振动与冲击,2010,29(10):162.
[13] JIA F,LEI Y,LIN J,et al.Deep neural networks:a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J].Mechanical Systems and Signal Processing,2016,72/73:303.
[14] GAO R,YAN R.Wavelets[M].Boston:Springer,2011.
[15] XUE J,XU S,SHUI P.Knowledge-based target detection in compound Gaussian clutter with inverse Gaussian texture[J].Digital Signal Processing,2019,95:102590.
[16] TANG Z R,ZHU R H,LIN P,et al.A hardware friendly unsupervised memristive neural network with weight sharing mechanism[J].Neurocomputing,2019,332(7):193.
[17] SMITH W,RANDALL R.Rolling element bearing diagnostics using the case western reserve university data:a benchmark study[J].Mechanical Systems and Signal Processing,2015,64/65:100.
[18] LIU Y,YAO L,XIA Z,et al.Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs)[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,246(5):118973.
[19] HUANG W Y,CHENG J S,YANG Y.Rolling bearing fault diagnosis and performance degradation assessment under variable operation conditions based on nuisance attribute projection[J].Mechanical Systems and Signal Processing,2019,114(1):165.
[20] JIANG W,ZHOU J,LIU H,et al.A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder[J].ISA Transactions,2019(87):235.