JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 35 Issue 1
January 2020
Article Contents
DING Di and NAN Guofang. Application of CNN-RNN fusion method in fault diagnosis of rotating machinery[J]. Journal of Light Industry, 2020, 35(1): 102-108. doi: 10.12187/2020.01.013
Citation: DING Di and NAN Guofang. Application of CNN-RNN fusion method in fault diagnosis of rotating machinery[J]. Journal of Light Industry, 2020, 35(1): 102-108. doi: 10.12187/2020.01.013 shu

Application of CNN-RNN fusion method in fault diagnosis of rotating machinery

  • Received Date: 2019-08-15
  • Aiming at the problems of current fault diagnosis of rotating machinery with long calculation time and low accuracy, a CNN-RNN fusion analysis method was proposed by combining the feature extraction capability of CNN and the processing capability of RNN timing. A one-dimensional CNN network was used to extract feature data, which removed invalid information affected by environmental noise and other factors and still had timeliness. Then, the RNN with high accuracy of processing time-series data calculated the feature data and then applied to the fault diagnosis of rotating machinery. The experimental results on the test set showed that the method did not require manual extraction of feature data, the computing time was reduced by about 1/2, and the accuracy of fault diagnosis was increased by about 2%.This method had feasibility.
  • 加载中
    1. [1]

      陈长征,张省,虞和济.基于神经网络的旋转机械故障诊断研究[J].机械强度,2000,22(2):104.

    2. [2]

      任浩,屈剑锋,柴毅,等.深度学习在故障诊断领域中的研究现状与挑战[J].控制与决策,2017,32(8):1345.

    3. [3]

      YU H,HATZIVASSILOGLOU V.Towards answering opinion questions:Separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Sapporo:ACL,2003:129.

    4. [4]

      庄雨璇,李奇,杨冰如,等.基于LSTM的轴承故障诊断端到端方法[J].噪声与振动控制,2019,39(6):187.

    5. [5]

      张青青.基于改进AlexNet的滚动轴承变工况故障诊断研究[D].兰州:兰州理工大学,2019.

    6. [6]

      RAI A,UPADHYAY S H.A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J].Tribology International,2016,96:289.

    7. [7]

      WANG L,WANG Z G,LIU S.An effectives multivariate time series classification approach using echo state network and adaptive differential evolution algorithm[J].Expert Systems with Applications,2016,43:237.

    8. [8]

      JOUIN M,GOURIVEAU R,HISSEL D,et al.Particle filter-based prognostics:Review,discussion and perspectives[J].Mechanical Systems and Signal Processing,2015,72/73:194.

    9. [9]

      赵光权,葛强强,刘小勇,等.基于DBN的故障特征提取及诊断方法研究[J].仪器仪表学报,2016,37(9):1946.

    10. [10]

      李巍华,单外平,曾雪琼.基于深度信念网络的轴承故障分类识别[J].振动工程学报,2016,29(2):340.

    11. [11]

      刘辉海,赵星宇,赵洪山,等.基于深度自编码网络模型的风电机组齿轮箱故障检测[J].电工技术学报,2017,32(17):156.

    12. [12]

      时培明,梁凯,赵娜,等.基于深度学习特征提取和粒子群支持向量机状态识别的齿轮智能故障诊断[J].中国机械工程,2017,28(9):1056.

    13. [13]

      李巍华,单外平,曾雪琼.基于深度信念网络的轴承故障分类识别[J].振动工程学报,2016,29(2):340.

    14. [14]

      侯文擎,叶鸣,李巍华.基于改进堆叠降噪自编码的滚动轴承故障分类[J].机械工程学报,2018,54(7):87.

    15. [15]

      HE K,ZHANG X,REN S,et al.Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]//2015 IEEE International Conference on Computer Vision (ICCV).Piscataway:IEEE Conference Publications,2015:14.

    16. [16]

      张倩.基于共振解调原理和转速阶比谱分析的滚动轴承故障诊断方法研究[D].杭州:浙江大学,2012:37.

    17. [17]

      EL-THALJI I,JANTUNEN E.A summary of fault modelling and predictive health monitoring of rolling element bearings[J].Mechanical Systems and Signal Processing,2015,60/61:252.

    18. [18]

      VINYALS O,TOSHEV A,BENGIO S,et al.Show and tell:A neural image caption generator[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Conference Publications,2015:47.

    19. [19]

      石鑫,朱永利.深度学习神经网络在电力变压器故障诊断中的应用[J].电力建设,2015,36(12):116.

    20. [20]

      吴国文,肖翱.基于深度学习神经网络的齿轮箱故障识别研究[J].网络安全技术与应用,2016(12):162.

    21. [21]

      侯荣涛,周子贤,赵晓平,等.基于堆叠稀疏自编码的滚动轴承故障诊断[J].轴承,2018(3):49.

    22. [22]

      张西宁,向宙,唐春华.一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用[J].西安交通大学学报,2018,52(7):6.

Article Metrics

Article views(1651) PDF downloads(26) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return