JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

养猪废水处理技术的研究进展

梁瑜海 肖咏茵

梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
引用本文: 梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
Citation: LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010

养猪废水处理技术的研究进展

    作者简介: 梁瑜海(1986-),男,广西壮族自治区崇左市人,华南农业大学首聘副教授,博士,主要研究方向为污水处理新技术.;
  • 基金项目: 国家自然科学基金项目(51708229);广东省珠江人才计划“青年拔尖人才”项目(2017GC010157)

  • 中图分类号: X703

The advance of swine wastewater treatment technology

  • Received Date: 2020-04-30

    CLC number: X703

  • 摘要: 综述了不同养猪废水处理技术的基本原理和优缺点,发现,传统处理技术多侧重于对废水中污染物的去除,但未考虑总氮的控制,难以实现节能降耗和资源的回收利用;新型处理技术不仅可以减少总氮去除过程中的能耗、物耗,还可以实现资源的回收利用.为了实现可持续发展战略,未来达到更高的出水排放标准,现有处理技术还需在优化运行条件、增加预处理措施、组合多技术处理等方面做出相应改进;而未来养猪废水处理新技术也会朝着低耗、高效和高质的方向发展.
    1. [1]

      马彦涛,薛金凤.养猪废水处理技术进展[J].环境与可持续发展,2009,34(5):29.

    2. [2]

      中华人民共和国国家统计局.第一次全国污染源普查公报[J].新华月报,2010(6):65.

    3. [3]

      潘庆.养猪场的废水污染及防治对策[J].环境污染治理技术与设备,2002(9):66.

    4. [4]

      万风,王海燕,周岳溪,等.养猪废水处理技术研究进展[J].农业灾害研究,2012,2(1):25.

    5. [5]

      欧阳婷,王涛,樊华.养猪废水深度治理技术研究进展[J].安徽农业科学,2016,44(35):81.

    6. [6]

      张德林.养猪养殖户沼气池的建设[J].现代农村科技,2012(15):78.

    7. [7]

      韦成乔.生态养猪沼气池的建设和管理研究[J].畜禽业,2018,29(11):59

    8. [8]

      李轶,刘雨秋,张镇,等.玉米秸秆与猪粪混合厌氧发酵产沼气工艺优化[J].农业工程学报,2014,30(5):185.

    9. [9]

      孙全平,邱凌,李自林,等.酒糟与猪粪混合厌氧发酵产沼气的研究[J].西北农业学报,2013,22(3):199.

    10. [10]

      邓媛方,邱凌,孙全平,等.蘑菇废弃菌棒及其与猪粪混合发酵对沼气产量及质量的影响[J].农业环境科学学报,2012,31(3):613.

    11. [11]

      LIU Y,MA S C,HUANG L,et al.Two-step heating mode with the same energy consumption as conventional heating for enhancing methane production during anaerobic digestion of swine wastewater[J].Journal of Environmental Management,2018,209:301.

    12. [12]

      赵青玲,杨世关,张百良.UASB处理养猪废水条件下进水浓度对污泥颗粒化的影响[J].可再生能源,2005(5):38.

    13. [13]

      郑仁宏.UASB处理畜禽养殖废水的启动研究[D].雅安:四川农业大学,2007.

    14. [14]

      万莉,邹义龙,弓晓峰,等.电增强零价铁强化厌氧氨氧化处理高氮养猪废水[J].环境科学研究,2015,28(8):1302.

    15. [15]

      ZENG Z,ZHANG M,KANG D,et al.Enhanced anaerobic treatment of swine wastewater with exogenous granular sludge:Performance and mechanism[J].Science of the Total Environment,2019,697:1.

    16. [16]

      ZHOU Z,PING Z,CHENG S,et al.A challenge in anaerobic digestion of swine wastewater:Recalcitrance and enhanced-degradation of dietary fibres[J].Biodegradation,2019,30(5/6):389.

    17. [17]

      CHEN J L,XU Y B,LI Y X,et al.Effective removal of nitrate by denitrification re-enforced with a two-stage anoxic/oxic (A/O) process from a digested piggery wastewater with a low C/N ratio[J].Journal of Environmental Management,2019,240:19.

    18. [18]

      夏经纬.倒置A2/O2与人工湿地处理猪场废水的试验研究[D].广州:华南农业大学,2016.

    19. [19]

      郑志彬.预处理/沼气池/两级AO工艺处理养殖废水[J].资源节约与环保,2018(4):88.

    20. [20]

      陈凤祥.UASB/两级AO工艺处理养猪废水的应用研究[J].广州化工,2014,43(4):89.

    21. [21]

      陈威,施武斌,龚松,等.EGSB-A/O-MBR工艺处理规模化猪场废水[J].给水排水,2014,40(3):45.

    22. [22]

      曾哲伟.A2/O-混凝工艺处理养猪场废水[J].广州化工,2016,44(11):185.

    23. [23]

      WU X,ZHU J,CHENG J H,et al.Optimization of three operating parameters for a two-step fed sequencing batch reactor (SBR) system to remove nutrients from swine wastewater[J].Applied Biochemistry and Biotechnology,2015,175(6):2857.

    24. [24]

      LIU J,LI J,WANG X D,et al.Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP[J].Journal of Environmental Sciences,2017,51(1):332.

    25. [25]

      SHENG X L,LIU R,SONG X Y,et al.Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J].Frontiers of Environmental Science & Engineering,2017,11(3):8.

    26. [26]

      SONG X Y,LIU R,CHEN L J,et al.Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater[J].Frontiers of Environmental Science & Engineering,2017,11(3):e13.

    27. [27]

      LI J Z,MENG J,LI J L,et al.The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure-free piggery wastewater[J].Bioresource Technology,2016,209:360.

    28. [28]

      MENG J,LI J L,LI J Z,et al.Efficiency and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating manure-free piggery wastewater with low COD/TN ratio[J].Bioresource Technology,2016,201:166.

    29. [29]

      MENG J,LI J L,LI J Z,et al.The role of COD/N ratio on the start-up performance and micro-bial mechanism of an upflow microaerobic reactor treating piggery wastewater[J].Journal of Environmental Management,2018,217:825.

    30. [30]

      施云芬,魏冬雪.MBBR两种填料对养猪废水脱氮除磷效果对比[J].化学通报,2014,77(6):562.

    31. [31]

      MENG J,LI J L,LI J Z,et al.Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel upflow microaerobic biofilm reactor[J].Bioresource Technology,2018,249:935.

    32. [32]

      万莉.规模化养猪场废水(沼液)BCO+SBBR好氧处理新工艺研究[D].南昌:南昌大学,2016.

    33. [33]

      宋承谋,蔡映红,吴正杰,等.规模化养猪废水处理问题及对策[J].中国猪业,2016,11(2):66.

    34. [34]

      ZHANG X,INOUE T,KATO K,et al.Perfor-mance of hybrid subsurface constructed wetland system for piggery wastewater treatment[J].Water Science and Technology,2016,73(1):13.

    35. [35]

      LI X,LI Y Y,LI Y,et al.Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments[J].Applied Microbiology and Biotechnology,2018,102:10755.

    36. [36]

      DONG X,REDDY G.Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J].Bioresource Technology,2010,101(4):1175.

    37. [37]

      HAN Z,DONG J,SHEN Z,et al.Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite[J].Chemosphere,2019,217:364.

    38. [38]

      LI L,LIU M,WU M,et al.Effects of duckweed (Spriodela polyrrhiza) remediation on the composition of dissolved organic matter in effluent of scale pig farms[J].Journal of Environmental Sciences,2017,55(5):247.

    39. [39]

      WANG W,YANG C,TANG X,et al.Carbon and energy fixation of great duckweed Spirodela polyrrhiza growing in swine wastewater[J].Environmental Science and Pollution Research,2015,22(20):15804.

    40. [40]

      LUO P,LIU F,LIU X,et al.Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum[J].Science of the Total Environment,2017,576:490.

    41. [41]

      LI X,ZHANG M,LIU F,et al.The significance of Myriophyllum elatinoides for swine wastewater treatment:Abundance and community structure of ammonia-oxidizing microorganisms in sediments[J].PLOS ONE,2015,10(10):e0139778.

    42. [42]

      LI X,ZHANG M,LIU F,et al.Abundance and distribution of microorganisms involved in denitrification in sediments of a Myriophyllum elatinoides purification system for treating swine wastewater[J].Environmental Science and Pollution Research International,2015,22(22):17906.

    43. [43]

      CHEN L,LIU F,JIA F,et al.Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater[J].Applied Microbiology and Biotechnology,2017,101(3):1301.

    44. [44]

      HUANG X,ZHENG J,LIU C,et al.Performance and bacterial community dynamics of vertical flow constructed wetlands during the treatment of antibiotics-enriched swine wastewater[J].Chemical Engineering Journal,2017,316:727.

    45. [45]

      敖子强,付嘉琦,桂双林,等.处理养猪废水的人工湿地植物筛选综述[J].家畜生态学报,2016,37(7):87.

    46. [46]

      许惠英,朱新富,王志荣.人工湿地技术在养猪废水处理中的应用[J].浙江树人大学学报(自然科学版),2010,10(4):15.

    47. [47]

      童凯,李俊斌.养猪废水处理工程实例介绍[J].北方环境,2011,23(7):179.

    48. [48]

      万莉,章洪涛,弓晓峰,等.鄱阳湖流域养猪废水治理概况与进展[J].南水北调与水利科技,2015,13(4):798.

    49. [49]

      邓玉君,叶志隆,叶欣,等.流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成[J].环境工程学报,2016,10(6):2933.

    50. [50]

      HUANG H,LIU J,WANG S,et al.Nutrients removal from swine wastewater by struvite precipitation recycling technology with the use of Mg3(PO4)2 as active component[J].Ecological Engineering,2016,92:111.

    51. [51]

      KIM D,MIN K,LEE K,et al.Effects of pH,molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater[J].Environmental Engineering Research,2017,22(1):12.

    52. [52]

      WU Z,ZOU S,ZHANG B,et al.Forward osmosis promoted in-situ formation of struvite with simultaneous water recovery from digested swine wastewater[J].Chemical Engineering Journal,2018,342:274.

    53. [53]

      LUO Z,WANG D,YANG J,et al.Nitrogen removal from digested piggery wastewater using fermented superphosphate within the pretreatment stage and an MAP fertilizer pot test[J].Journal of Cleaner Production,2019,212:372.

    54. [54]

      赵倩倩,顾玲.PVDF膜接触器脱除回收垃圾渗滤废液中的氨氮[J].天津化工,2014,28(1):53.

    55. [55]

      张宗阳,郝兴阁,赵建敏,等.双套型中空纤维膜接触器用于脱除水溶液中氨氮[J].高校化学工程学报,2016,30(5):1213.

    56. [56]

      刘芮,陆军,李保,等.错流式中空纤维膜接触器脱除水中氨氮的实验研究[J].工业水处理,2015,35(3):52.

    57. [57]

      SHI L,HU Y,XIE S,et al.Recovery of nutrients and volatile fatty acids from pig manure hydrolysate using two-stage bipolar membrane electrodialysis[J].Chemical Engineering Journal,2018,334:134.

    58. [58]

      LIM S,KIM T,KIM J,et al.Enhanced treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor[J].Separation and Purification Technology,2016,157:72.

    59. [59]

      HUANG H,ZHANG D,GUO G,et al.Dolomite application for the removal of nutrients from synthetic swine wastewater by a novel combined electrochemical process[J].Chemical Engineering Journal,2018,335:665.

    60. [60]

      WANG H M,MIAO Z,LI Y F,et al.Energy self-sustained treatment of swine wastewater in a microbial electrochemical technology-centered hybrid system[J].Environmental Science:Water Research & Technology,2020,6(3):747.

    61. [61]

      DING W J,CHENG S A,YU L L,et al.Effective swine wastewater treatment by combining microbial fuel cells with flocculation[J].Chemosphere,2017,182:567.

    62. [62]

      CERRILLO M,OLIVERAS J,VINAS M,et al.Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems[J].Bioelectrochemistry,2016,110:69.

    63. [63]

      CERRILLO M,VINAS M,BONMATI A.Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell[J].Bioresource Technology,2016,216:362.

    64. [64]

      SCHERSON Y,WELLS G,WOO S,et al.Nitrogen removal with energy recovery through N2O decomposition[J].Energy Environ Sci,2013,6(1):241.

    65. [65]

      SCHERSON Y,WOO S,CRIDDLE C.Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery[J].Environmental Science & Technology,2014,48(10):5612.

    66. [66]

      WESSBACH M,THIEL P,DREWES J,et al.Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions[J].Bioresource Technology,2018,255:58.

    67. [67]

      MEISSBACH M,GOSSLER F,DREWES J,et al.Separation of nitrous oxide from aqueous solutions applying a micro porous hollow fiber membrane contactor for energy recovery[J].Separation and Purification Technology,2018,195:271.

    68. [68]

      WEISSBACH M,DREWES J,KOCH K.Application of the oxidation reduction potential (ORP) for process control and monitoring nitrite in a coupled aerobic-anoxic nitrous decomposition operation (CANDO)[J].Chemical Engineering Journal,2018,343:484.

    69. [69]

      MAYUNG J,WANG Z,YUAN T,et al.Production of nitrous oxide from nitrite in stable type ii methanotrophic enrichments[J].Environmental Science & Technology,2015,49(18):10969.

    70. [70]

      GAO H,LIU M,GRIFFIN J,et al.Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms[J].American Chemical Society,2017(8):4531.

    71. [71]

      WANG Y,GAO W,YEN H,et al.Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J].Bioresource Technology,2015,198:619.

    72. [72]

      VIMALKUMAR G,SURESH S,DHARMARJAN R,et al.Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp.MM3[J].Bioresource Technology,2018,256:254.

    73. [73]

      WEN Y,HE Y,JI X,et al.Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage[J].Bioresource Technology,2017,243:247.

    74. [74]

      LEE Y,HAN G.Complete reduction of highly concentrated contaminants in piggery waste by a novel process scheme with an algal-bacterial symbiotic photobioreactor[J].Journal of Environmental Management,2016,177:202.

    75. [75]

      YU J,HU H,WU X,et al.Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater[J].Science of the Total Environment,2020,701:1.

    76. [76]

      GUO G,CAO W,SUN S,et al.Nutrient removal and biogas upgrading by integrating fungal-microalgal cultivation with anaerobically digested swine wastewater treatment[J].Journal of Applied Phycology,2017,29(6):2857.

    77. [77]

      KIM H,CHOI W,CHAE A,et al.Evaluating integrated strategies for robust treatment of high saline piggery wastewater[J].Water Research,2016,89:222.

    78. [78]

      WANG M,YANG Y,CHEN Z,et al.Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae[J].Bioresource Technology,2016,222:130.

    79. [79]

      袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000(2):29.

    80. [80]

      于德爽,彭永臻,张相忠,等.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003(1):40.

    81. [81]

      尚会来,彭永臻,张静蓉,等.温度对短程硝化反硝化的影响[J].环境科学学报,2009,29(3):516.

    82. [82]

      曾薇,彭永臻,王淑莹,等.两段SBR法去除有机物及短程硝化反硝化[J].环境科学,2002(2):50.

    83. [83]

      高大文,彭永臻,杨庆,等.应用实时控制实现和稳定短程硝化反硝化[J].中国给水排水,2003(12):1.

    84. [84]

      董文艺,赵志军,李继.甲烷作为反硝化气体碳源的研究进展[J].安全与环境工程,2011,18(4):64.

    85. [85]

      王东豪,廖方成,邓正栋,等.氧气浓度对好氧甲烷氧化耦合反硝化过程的影响[J].净水技术,2019,38(7):101.

    86. [86]

      范秋香,吴箐,常佳丽,等.反硝化型甲烷厌氧氧化的研究进展[J].生态学杂志,2015,34(6):1747.

    87. [87]

      XIE G,LIU T,CAI C,et al.Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J].Water Research,2018,131:196.

    88. [88]

      FAN S,XIE G,LU Y,et al.Granular sludge coupling nitrate/nitrite dependent anaerobic methane oxidation with anammox:From proof-of-concept to high rate nitrogen removal[J].Environmental Science & Technology,2020,54(1):297.

    89. [89]

      HU Z,RU D,WANG Y,et al.Optimization of a nitrite-dependent anaerobic methane oxidation (n-damo) process by enhancing methane availability[J].Bioresource Technology,2019,275:101.

    90. [90]

      CAI C,HU S,CHEN X,et al.Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-depen-dent denitrification and anammox[J].Science of the Total Environment,2018,639:278.

    91. [91]

      BEATRIZ M,CRUZ G,DIMITAR K,et al.Anammox for ammonia removal from pig manure effluents:Effect of organic matter content on process performance[J].Bioresource Techno-logy,2009,100(7):2171.

    92. [92]

      ZHANG Z,ZHANG Q,XU J,et al.Long-term effects of heavy metals and antibiotics on granule-based anammox process:Granule property and performance evolution[J].Applied Microbiology and Biotechnology,2016,100(5):2417.

    93. [93]

      NI S,YANG N.Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure[J].PeerJ,2014,2(1):e336.

    94. [94]

      何占飞.厌氧氨氧化处理养殖废水启动实验研究[D].西安:西南交通大学,2008.

    95. [95]

      张正哲.重金属离子对厌氧氨氧化颗粒污泥的影响及其修复策略研究[D].杭州:杭州师范大学,2016.

    96. [96]

      李晶.氟喹诺酮抗生素对厌氧氨氧化菌活性抑制研究[D].大连:大连理工大学,2015.

    97. [97]

      赵楠婕,解庆林,游少鸿,等.厌氧氨氧化工艺处理猪场废水沼液的试验研究[J].四川环境,2012,31(5):4.

    98. [98]

      荀方飞,何占飞,葛亚军,等.厌氧氨氧化处理猪场养殖废水最佳运行工艺研究[J].广东农业科学,2010,37(7):174.

    99. [99]

      WANG S,WANG L,DENG L W,et al.Performance of autotrophic nitrogen removal from digested piggery wastewater[J].Bioresource Technology,2017,241:465.

    1. [1]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

    2. [2]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

    3. [3]

      倪众楚鹏飞林颖刘玉欣 . 低温长时间热处理过程中氧化和加热对海参体壁胶原纤维结构的影响. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  46
  • 文章访问数:  3445
  • 引证文献数: 0
文章相关
  • 收稿日期:  2020-04-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
引用本文: 梁瑜海, 肖咏茵. 养猪废水处理技术的研究进展[J]. 轻工学报, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010
Citation: LIANG Yuhai and XIAO Yongyin. The advance of swine wastewater treatment technology[J]. Journal of Light Industry, 2020, 35(4): 67-80. doi: 10.12187/2020.04.010

养猪废水处理技术的研究进展

    作者简介:梁瑜海(1986-),男,广西壮族自治区崇左市人,华南农业大学首聘副教授,博士,主要研究方向为污水处理新技术.
  • 华南农业大学 资源环境学院, 广东 广州 510642
基金项目:  国家自然科学基金项目(51708229);广东省珠江人才计划“青年拔尖人才”项目(2017GC010157)

摘要: 综述了不同养猪废水处理技术的基本原理和优缺点,发现,传统处理技术多侧重于对废水中污染物的去除,但未考虑总氮的控制,难以实现节能降耗和资源的回收利用;新型处理技术不仅可以减少总氮去除过程中的能耗、物耗,还可以实现资源的回收利用.为了实现可持续发展战略,未来达到更高的出水排放标准,现有处理技术还需在优化运行条件、增加预处理措施、组合多技术处理等方面做出相应改进;而未来养猪废水处理新技术也会朝着低耗、高效和高质的方向发展.

English Abstract

参考文献 (99) 相关文章 (3)

目录

/

返回文章