JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 35 Issue 4
July 2020
Article Contents
WANG Xuanli, ZHANG Anlin, HUANG Daoying, et al. Network traffic classification analysis of different machine learning algorithms in SDN environment[J]. Journal of Light Industry, 2020, 35(4): 96-102. doi: 10.12187/2020.04.013
Citation: WANG Xuanli, ZHANG Anlin, HUANG Daoying, et al. Network traffic classification analysis of different machine learning algorithms in SDN environment[J]. Journal of Light Industry, 2020, 35(4): 96-102. doi: 10.12187/2020.04.013 shu

Network traffic classification analysis of different machine learning algorithms in SDN environment

  • Received Date: 2020-03-31
  • In order to compare and analyze the network traffic classification effect of different machine learning algorithms in the software defined network (SDN) environment, the Moore dataset was balanced, and four classic machine learning algorithms including KNN, random forest (RF), support vector machine (SVM) and gradient lifting decision tree (GBDT) were supported on the machine learning platform RapidMiner to select different classification features for classification experiments. Experimental results showed that compared with the other three algorithms, the GBDT algorithm could obtain better classification results in a shorter time.
  • 加载中
    1. [1]

      MCKEOWN N,ANDERSON T,BALAKRISHNAN H,et al.OpenFlow:Enabling innovation in campus networks[J].ACM SIGCOMM Computer Communication Review,2008,38(2):69.

    2. [2]

      吴艳.基于流量分类的智能SDN路由优化技术研究[D].杭州:浙江工商大学,2019.

    3. [3]

      胡孟婷.SDN网络流量态势评估及预测技术研究[D].成都:电子科技大学,2019.

    4. [4]

      刘佳美,徐巧枝.基于机器学习的SDN网络流量预测与部署策略[J/OL].计算机工程:1-7[2020-03-16
      ].https://doi.org/10.19678/j.issn.1000-3428.0056436.

    5. [5]

      MOORE A W,PAPAGIANNAKI K.Toward the accurate identification of network applications[C]//Proceedings of International Workshop on Passive and Active Network Measurement.Heidelberg:Springer,2005:41.

    6. [6]

      彭芸,刘琼.Internet流分类方法的比较研究[J].计算机科学,2007(8):58.

    7. [7]

      SEN S,SPATSCHECK O,WANG D.Accurate,scalable in-network identification of p2p traffic using application signatures[C]//Proceedings of the Web Conference.Manhattan:[s.n.],2004:512.

    8. [8]

      NGUYEN T T T,ARMITAGE G.Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world ip networks[C]//Proceedings of 2006 31st IEEE Conference on Local Computer Networks.Piscataway:IEEE,2006:369.

    9. [9]

      BERNAILLE L,TEIXEIRA R.Early recognition of encrypted applications[C]//Proceedings of International Conference on Passive and Active Network Measurement.Heidelberg:Springer,2007:165.

    10. [10]

      吴辉.基于模糊K-Means的网络流分类系统研究与实现[D].广州:广东工业大学,2016.

    11. [11]

      LI J,ZHANG S,LU Y,et al.Real-time P2P traffic identification[C]//Proceedings of 2008 IEEE Global Telecommunications Conference.Piscataway:IEEE,2008:1.

    12. [12]

      QUINLAN J R.C4.5:Programs for machine learning[M].Amsterdam:Elsevier,2014.

    13. [13]

      李平红,王勇,陶晓玲.支持向量机的半监督网络流量分类方法[J].计算机应用,2013,33(6):33.

    14. [14]

      何建涛.SDN中基于机器学习的DDoS攻击检测与防御方法研究[D].合肥:安徽大学,2019.

    15. [15]

      李兆斌,韩禹,魏占祯,等.SDN中基于机器学习的网络流量分类方法研究[J].计算机应用与软件,2019,36(5):75.

    16. [16]

      王赋翼.机器学习在流量分类中的应用[D].成都:电子科技大学,2019.

    17. [17]

      HAN H,WANG W Y,MAO B H.Borderline-SMOTE:A new over-sampling method in imbalanced data sets learning[C]//Proceedings of International Conference on Intelligent Computing.Heidelberg:Springer,2005:878.

    18. [18]

      张龙璨,柳斌,李芝棠.机器学习分类下网络流量的特征选取[J].广西大学学报(自然科学版),2011,36(S1):6.

Article Metrics

Article views(2299) PDF downloads(16) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return