JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

TiAl合金熔体与铸型界面反应研究进展

樊江磊 梁柳博 李莹 王艳 吴深 周向葵 高红霞 刘建秀

樊江磊, 梁柳博, 李莹, 等. TiAl合金熔体与铸型界面反应研究进展[J]. 轻工学报, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009
引用本文: 樊江磊, 梁柳博, 李莹, 等. TiAl合金熔体与铸型界面反应研究进展[J]. 轻工学报, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009
FAN Jianglei, LIANG Liubo, LI Ying, et al. Research status of interfacial reaction between TiAl alloy melt and mold materials[J]. Journal of Light Industry, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009
Citation: FAN Jianglei, LIANG Liubo, LI Ying, et al. Research status of interfacial reaction between TiAl alloy melt and mold materials[J]. Journal of Light Industry, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009

TiAl合金熔体与铸型界面反应研究进展

    作者简介: 樊江磊(1983-),男,河南省南阳市人,郑州轻工业大学副教授,博士,主要研究方向为金属材料成型与凝固技术.;
  • 基金项目: 国家自然科学基金项目(51501167,U1904175);2018年度河南省高等学校青年骨干教师培养计划项目(2018GGJS090);河南省研究生教育改革与质量提升工程项目(YJS2021AL026);郑州市重大科技创新专项项目(2019CXZX0065)

  • 中图分类号: TG146.23

Research status of interfacial reaction between TiAl alloy melt and mold materials

  • Received Date: 2020-05-06

    CLC number: TG146.23

  • 摘要: 通过对精密铸造及定向凝固TiAl合金与型壳材料界面反应的研究现状进行综述,指出石墨型壳、高熔点金属型壳、氧化物型壳、锆酸盐型壳与熔融TiAl合金之间的反应机理及相互作用程度:石墨型壳界面反应程度较剧烈,C污染严重;高熔点金属型壳制备成本较高,实际使用中对环境条件要求苛刻;氧化物型壳材料来源广泛,相对成本较低,对比常用的CaO、Al2O3、ZrO2型壳,Y2O3型壳与熔融TiAl合金界面反应程度最微弱;锆酸盐型壳界面反应程度较微弱,展现出相当大的应用潜力.未来应重点研究氧化物型壳和锆酸盐型壳在铸造TiAl合金领域的应用,可侧重于改良型壳材料的内部构造、开发更为稳定的粘接剂材料等方面.
    1. [1]

      LORIA E A.Gamma titanium aluminides as prospective structural materials[J].Intermetallics,2000,8(9/10/11):1339.

    2. [2]

      YOO M H,FU C L,LEE J K.Deformation twinning in metals and ordered intermetallics-Ti and Ti-aluminides[J].Journal de Physique Ⅲ,1991,1(6):1065.

    3. [3]

      GNANAMOORTHY R,MUTOH Y,MASAHASHI N,et al.High-temperature strength and fracture toughness in γ-phase titanium aluminides[J].Journal of Materials Science,1993,28(24):6631.

    4. [4]

      HAMZAH E,KANNIAH M,HARUN M.Effect of beta phase on room to high temperature mechanical properties of as-cast gamma titanium aluminide[J].Mechanics of Advanced Materials and Structures,2009,16(5):384.

    5. [5]

      PLANCK S K,ROSENBERGER A H.The influence of high temperature exposure on the mechanical performance of a γ titanium aluminide alloy[J].Materials Science and Engineering(A),2002,325(1/2):270.

    6. [6]

      李中权,肖旅,李宝辉,等.航天先进轻合金材料及成形技术研究综述[J].上海航天,2019,36(2):9.

    7. [7]

      MCCULLOUGH C,VALENCIA J J,LEVI C G,et al.Phase equilibria and solidification in Ti-Al alloys[J].Acta Metallurgica,1989,37(5):1321.

    8. [8]

      TSUYAMA S,MITAO S,MINAKAWA K.Alloy modification of γ-base titanium aluminide for improved oxidation resistance,creep strength and fracture toughness[J].Materials Science and Engineering(A),1992,153(1/2):451.

    9. [9]

      DIMIDUK D M.Gamma titanium aluminide alloys:An assessment within the competition of aerospace structural materials[J].Materials Science and Engineering(A),1999,263(2):281.

    10. [10]

      KISHIDA K,INUI H,YAMAGUCHI M.Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys[J].Philosophical Magazine A,1998,78(1):1.

    11. [11]

      傅恒志,丁宏升,陈瑞润,等.钛铝合金电磁冷坩埚定向凝固技术的研究[J].稀有金属材料与工程,2008,37(4):565.

    12. [12]

      苏鹏,刘鸿羽,赵军,等.钛合金熔模铸造型壳制备技术研究现状[J].铸造,2012,61(12):1401.

    13. [13]

      BARBOSA J J,RIBEIRO C S.Influence of crucible material on the level of contamination in TiAl using induction melting[J].International Journal of Cast Metals Research,2000,12(5):293.

    14. [14]

      EGAN T,SZURMAN I,KURSA M,et al.Preparation of TiAl-based alloys by induction melting in graphite crucibles[J].Kovove Materialy,2015,53(2):69.

    15. [15]

      KAMYSHNYKOVA K,LAPIN J.Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles[J].Vacuum,2018,154:218.

    16. [16]

      罗文忠,沈军,闵志先,等.TiAl合金定向凝固过程中与坩埚材料的界面反应研究[J].稀有金属材料与工程,2009,38(8):1441.

    17. [17]

      PERDRIX F,TRICHET M F,BONNENTIEN J L,et al.Relationships between interstitial content,microstructure and mechanical properties in fully lamellar Ti-48Al alloys,with special reference to carbon[J].Intermetallics,2001,9(9):807.

    18. [18]

      MCCULLOUGH C,VALENCIA J J,LEVI C G,et al.Microstructural analysis of rapidly solidified Ti-Al-X powders[J].Materials Science and Engineering(A),1990,124(1):83.

    19. [19]

      BROWN R A,BROWN C A.Investment shell molds for the high integrity precision casting of reactive and refractory metals,and methods for their manufacture:US3537949A[P].1970-11-03[2020-03-10].

    20. [20]

      BROWN R A.Investment shell mold,for use in casting of reacting and refractory metals:US3994346[P].1976-11-30[2020-03-15].

    21. [21]

      DONACHIE M J.Titanium:A technical guide[M].New York:The Materials Information Society,2000:41.

    22. [22]

      刘爱辉.钛合金熔体与陶瓷铸型界面反应规律及微观机理研究[D].哈尔滨:哈尔滨工业大学,2007.

    23. [23]

      JIA Q,CUI Y Y,YANG R.Intensified interfacial reactions between gamma titanium aluminide and CaO stabilised ZrO2[J].International Journal of Cast Metals Research,2004,17(1):23.

    24. [24]

      ZHU Y,YANG Y Q,SUN J.Calculation of activity coefficients for components in ternary Ti alloys and intermetallics as matrix of composites[J].Transactions of Nonferrous Metals Society of China,2004,14(5):875.

    25. [25]

      DING X,FAN P,HAN Q Y.Models of activity and activity interaction parameter in ternary metallic melt[J].Acta Metallrugica Sinica,1994,30(14):49.

    26. [26]

      KOSTOV A,FRIEDRICH B.Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys[J].Computational Materials Science,2006,38(2):374.

    27. [27]

      崔仁杰.TiAl合金与氧化钇耐火材料的相互作用规律及微观机理研究[D].北京:北京航空航天大学,2011.

    28. [28]

      KUANG J P,HARDING R A,CAMPBELL J.Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys[J].Materials Science and Technology,2000,16(9):1007.

    29. [29]

      LASALLE J C,FANELLI A J,BARRY E J,et al.Inert calcia facecoats for investment casting of titanium and titanium-aluminide alloys:US5766329[P].1998-06-16[2020-04-18].

    30. [30]

      LIU K,MA Y C,GAO M,et al.Single step centrifugal casting TiAl automotive valves[J].Intermetallics,2005,13(9):925.

    31. [31]

      CHEN B,MA Y C,GAO M,et al.Changes of oxygen content in molten TiAl alloys as a function of superheat during vacuum induction melting[J].Journal of Materials Science & Technology,2010,26(10):900.

    32. [32]

      GOMES F,BARBOSA J,RIBEIRO C S.Induction melting of γ-TiAl in CaO crucibles[J].Intermetallics,2008,16(11/12):1292.

    33. [33]

      FU B G,WANG H W,ZOU C M,et al.Interfacial reactions between Ti-1100 alloy and CaO crucible during casting process[J].Transactions of Nonferrous Metals Society of China,2014,24(10):3118.

    34. [34]

      KUANG J P,HARDING R A,CAMPBELL J.A study of refractories as crucible and mould materials for melting and casting γ-TiAl alloys[J].International Journal of Cast Metals Research,2001,13(5):277.

    35. [35]

      LIN X D,XUE X Y,ZHONG H,et al.Interface reaction between ceramic moulds and high Nb-TiAl alloys[J].Rare Metal Materials and Engineering,2013,42(8):1568.

    36. [36]

      CHENG X,YUAN C,SHEVCHENKO D,et al.The influence of mould pre-heat temperature and casting size on the interaction between a Ti-46Al-8Nb-1B alloy and the mould comprising an Al2O3 face coat[J].Materials Chemistry and Physics,2014,146(3):295.

    37. [37]

      王家芳,王健农,杨杰.TiAl基合金与陶瓷界面反应的研究[J].特种铸造及有色合金,2002(5):40.

    38. [38]

      SUNG S Y,KIM Y J.Alpha-case formation mechanism on titanium investment castings[J].Materials Science and Engineering(A),2005,405(1/2):173.

    39. [39]

      FAN J L,GUO J J,WANG S Y,et al.Microstructure evolution and interfacial reaction of TiAl-Si alloy solidified in alumina crucible[J].Materials Science and Technology,2015,31(14):1727.

    40. [40]

      ZHANG H R,TANG X X,ZHOU C G,et al.Comparison of directional solidification of γ-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles[J].Journal of the European Ceramic Society,2013,33(5):925.

    41. [41]

      ZHANG H R,TANG X X,ZHOU L,et al.Interactions between Ni-44Ti-5Al-2Nb-Mo alloy and oxide ceramics during directional solidification process[J].Journal of Materials Science,2012,47(17):6451.

    42. [42]

      蒋海燕,李邦盛,李志强,等.液钛与氧化锆陶瓷型壳的相互作用[J].中国有色金属学报,1999,9(2):65.

    43. [43]

      李邦盛,蒋海燕,李志强,等.钛合金熔模精铸氧化锆陶瓷型壳/金属界面反应研究[J].航空材料学报,1999(2):45.

    44. [44]

      JIA Q,CUI Y Y,YANG R.A study of two refractories as mould materials for investment casting TiAl based alloys[J].Journal of Materials Science,2006,41(10):3045.

    45. [45]

      刘爱辉,李邦盛,南海,等.TiAl基合金熔体与氧化物铸型界面的相互作用[J].稀有金属材料与工程,2007,36(11):1975.

    46. [46]

      隋艳伟,程成,冯坤,等.定向凝固钛铝合金熔体与铸型界面反应研究展望[J].材料科学与工艺,2016,24(2):91.

    47. [47]

      CUI Y S,TANG X X,GAO M,et al.Interactions between TiAl alloy and different oxide moulds under high-temperature and long-time condition[J].High Temperature Materials and Processes,2013,32(3):295.

    48. [48]

      SAARI H,BEDDOES J,SEO D Y,et al.Development of directionally solidified γ-TiAl structures[J].Intermetallics,2005,13(9):937.

    49. [49]

      BARBOSA J,RIBEIRO C S,MONTEIRO A C.Influence of superheating on casting of γ-TiAl[J].Intermetallics,2007,15(7):945.

    50. [50]

      CUI R J,GAO M,ZHANG H,et al.Interactions between TiAl alloys and yttria refractory material in casting process[J].Journal of Materials Processing Technology,2010,210(9):1190.

    51. [51]

      张花蕊,高明,唐晓霞,等.定向凝固过程中Ti-47Al-2Cr-2Nb合金与Y2O3陶瓷的相互作用[J].金属学报,2010,46(7):890.

    52. [52]

      KIM M G,KIM S K,KIM Y J.Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys[J].Materials Transactions,2002,43(4):745.

    53. [53]

      KIM S K,KIM T K,KIM M G,et al.Investment casting of titanium alloys with CaO Crucible and CaZrO3 mold[M]//JATA K,LEE E W,FRAZIER W F,et al.Lightweight alloys for aerospace application.[S.l:s.n.],2001:251-260.

    54. [54]

      SCHAFFÖNER S,ANEZIRIS C G,BEREK H,et al.Corrosion behavior of calcium zirconate refractories in contact with titanium aluminide melts[J].Journal of the European Ceramic Society,2015,35(3):1097.

    55. [55]

      KLOTZ U E,LEGNER C,BULLING F,et al.Investment casting of titanium alloys with calcium zirconate moulds and crucibles[J].The International Journal of Advanced Manufacturing Technology,2019,103:343.

    56. [56]

      LI K,XIONG F H,CHEN G Y,et al.Directional solidification of Ti-46Al-8Nb alloy in BaZrO3 coated Al2O3 composite mould[J].Intermetallics,2018,102:106.

    57. [57]

      CHEN G Y,KANG J Y,GAO P Y,et al.Effect of CaO additive on the interfacial reaction between the BaZrO3 refractory and titanium enrichment melt[C]//Proceedings of TMS Annual Meeting & Exhibition.Heidelberg:Springer,2018:235-244.

    58. [58]

      张钊,朱凯亮,刘岚洁,等.BaZrO3坩埚的制备及与钛合金熔体的界面反应[J].硅酸盐学报,2013,41(9):1278.

    59. [59]

      贺进,魏超,李明阳,等.BaZrO3耐火材料与TiAl合金熔体的界面反应[J].中国有色金属学报,2015,25(6):1505.

    60. [60]

      CHEN G Y,LAN B B,XIONG F H,et al.Pilot-scale experimental evaluation of induction melting of Ti-46Al-8Nb alloy in the fused BaZrO3 crucible[J].Vacuum,2019,159:293.

    1. [1]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  1138
  • 引证文献数: 0
文章相关
  • 收稿日期:  2020-05-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
樊江磊, 梁柳博, 李莹, 等. TiAl合金熔体与铸型界面反应研究进展[J]. 轻工学报, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009
引用本文: 樊江磊, 梁柳博, 李莹, 等. TiAl合金熔体与铸型界面反应研究进展[J]. 轻工学报, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009
FAN Jianglei, LIANG Liubo, LI Ying, et al. Research status of interfacial reaction between TiAl alloy melt and mold materials[J]. Journal of Light Industry, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009
Citation: FAN Jianglei, LIANG Liubo, LI Ying, et al. Research status of interfacial reaction between TiAl alloy melt and mold materials[J]. Journal of Light Industry, 2020, 35(6): 68-83. doi: 10.12187/2020.06.009

TiAl合金熔体与铸型界面反应研究进展

    作者简介:樊江磊(1983-),男,河南省南阳市人,郑州轻工业大学副教授,博士,主要研究方向为金属材料成型与凝固技术.
  • 郑州轻工业大学 机电工程学院, 河南 郑州 450002
基金项目:  国家自然科学基金项目(51501167,U1904175);2018年度河南省高等学校青年骨干教师培养计划项目(2018GGJS090);河南省研究生教育改革与质量提升工程项目(YJS2021AL026);郑州市重大科技创新专项项目(2019CXZX0065)

摘要: 通过对精密铸造及定向凝固TiAl合金与型壳材料界面反应的研究现状进行综述,指出石墨型壳、高熔点金属型壳、氧化物型壳、锆酸盐型壳与熔融TiAl合金之间的反应机理及相互作用程度:石墨型壳界面反应程度较剧烈,C污染严重;高熔点金属型壳制备成本较高,实际使用中对环境条件要求苛刻;氧化物型壳材料来源广泛,相对成本较低,对比常用的CaO、Al2O3、ZrO2型壳,Y2O3型壳与熔融TiAl合金界面反应程度最微弱;锆酸盐型壳界面反应程度较微弱,展现出相当大的应用潜力.未来应重点研究氧化物型壳和锆酸盐型壳在铸造TiAl合金领域的应用,可侧重于改良型壳材料的内部构造、开发更为稳定的粘接剂材料等方面.

English Abstract

参考文献 (60) 相关文章 (1)

目录

/

返回文章