JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于小波包分解和卷积神经网络的滚动轴承故障诊断

楼剑阳 南国防 宋传冲

楼剑阳, 南国防, 宋传冲. 基于小波包分解和卷积神经网络的滚动轴承故障诊断[J]. 轻工学报, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010
引用本文: 楼剑阳, 南国防, 宋传冲. 基于小波包分解和卷积神经网络的滚动轴承故障诊断[J]. 轻工学报, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010
LOU Jianyang, NAN Guofang and SONG Chuanchong. Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network[J]. Journal of Light Industry, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010
Citation: LOU Jianyang, NAN Guofang and SONG Chuanchong. Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network[J]. Journal of Light Industry, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010

基于小波包分解和卷积神经网络的滚动轴承故障诊断

    作者简介: 楼剑阳(1996-),男,浙江省绍兴市人,上海理工大学硕士研究生,主要研究方向为深度学习和旋转机械故障诊断.;
  • 基金项目: 国家自然科学基金项目(91852117)

  • 中图分类号: TK05

Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network

  • Received Date: 2020-07-26
    Accepted Date: 2021-02-05

    CLC number: TK05

  • 摘要: 针对旋转机械滚动轴承在恶劣工作环境中易于损坏,而目前故障诊断过于依赖人工特征提取的问题,提出了一种基于小波包分解和卷积神经网络(CNN)的滚动轴承故障诊断方法(WPDEC-CNN):通过小波包分解对振动时域信号进行处理,获得表征信号相似的小波系数,再将其进行预处理后输入CNN进行分类识别.试验结果表明,WPDEC-CNN的损失率低于BP神经网络和CNN,为0.108 9;WPDEC-CNN的故障分类准确率均高于BP神经网络和CNN,达到97.3%,验证了所提故障诊断方法的有效性.
    1. [1]

      付阶辉.基于Petri网的故障诊断方法研究[D].南京:东南大学,2004.

    2. [2]

      张润林.旋转机械故障机理与诊断技术[M].北京:机械工业出版社,2002.

    3. [3]

      李舜酩,郭海东,李殿荣.振动信号处理方法综述[J].仪器仪表学报,2013,34(8):1907.

    4. [4]

      WANG J,MA Y,ZHANG L,et al.Deep learning for smart manufacturing:methods and applications[J].Journal of Manufaturing Systems,2018(48):144.

    5. [5]

      MATEO C,TALAVERA J.Short-time Fourier transform with the window size fixed in the frequency domain[J]. Digital Signal Processing,2018(77):13.

    6. [6]

      YANG Z J,YANG L H,QING C M.An oblique-extrema-based approach for empirical mode decomposition[J].Digital Signal Processing,2010(20):699.

    7. [7]

      ZHANG K,GENCAY R,YAZGAN M.Application of wavelet decomposition in time-series forecasting[J].Economics Letters,2017(158):41.

    8. [8]

      VAUTRIN D,ARTUSI X,LUCAS M,et al.A novel criterion of wavelet packet best basis selection for signal classification with application to brain-computer interfaces[J].IEEE Transactions on Biomedical Engineering,2009,56(11):2734.

    9. [9]

      QIN Y.A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis[J].IEEE Transactions on Industrial Electronics,2018,65(3):2716.

    10. [10]

      DING X,HE Q.Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J].IEEE Transactions on Instrumentation and Measurement,2017,66(8):1926.

    11. [11]

      张建宇,李文斌,张随征,等.多小波自适应阈值降噪在故障诊断中的应用[J].北京工业大学学报,2013,39(2):166.

    12. [12]

      赵元喜,胥永刚,高立新,等.基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J].振动与冲击,2010,29(10):162.

    13. [13]

      JIA F,LEI Y,LIN J,et al.Deep neural networks:a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J].Mechanical Systems and Signal Processing,2016,72/73:303.

    14. [14]

      GAO R,YAN R.Wavelets[M].Boston:Springer,2011.

    15. [15]

      XUE J,XU S,SHUI P.Knowledge-based target detection in compound Gaussian clutter with inverse Gaussian texture[J].Digital Signal Processing,2019,95:102590.

    16. [16]

      TANG Z R,ZHU R H,LIN P,et al.A hardware friendly unsupervised memristive neural network with weight sharing mechanism[J].Neurocomputing,2019,332(7):193.

    17. [17]

      SMITH W,RANDALL R.Rolling element bearing diagnostics using the case western reserve university data:a benchmark study[J].Mechanical Systems and Signal Processing,2015,64/65:100.

    18. [18]

      LIU Y,YAO L,XIA Z,et al.Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs)[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,246(5):118973.

    19. [19]

      HUANG W Y,CHENG J S,YANG Y.Rolling bearing fault diagnosis and performance degradation assessment under variable operation conditions based on nuisance attribute projection[J].Mechanical Systems and Signal Processing,2019,114(1):165.

    20. [20]

      JIANG W,ZHOU J,LIU H,et al.A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder[J].ISA Transactions,2019(87):235.

    1. [1]

      费致根鲁豪宋晓晓赵鑫昌郭兴肖艳秋 . 基于改进ResNet网络的烟丝输送带洁净度分类模型. 轻工学报, 2024, 39(5): 71-77. doi: 10.12187/2024.05.008

  • 加载中
计量
  • PDF下载量:  30
  • 文章访问数:  1266
  • 引证文献数: 0
文章相关
  • 收稿日期:  2020-07-26
  • 修回日期:  2021-02-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
楼剑阳, 南国防, 宋传冲. 基于小波包分解和卷积神经网络的滚动轴承故障诊断[J]. 轻工学报, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010
引用本文: 楼剑阳, 南国防, 宋传冲. 基于小波包分解和卷积神经网络的滚动轴承故障诊断[J]. 轻工学报, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010
LOU Jianyang, NAN Guofang and SONG Chuanchong. Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network[J]. Journal of Light Industry, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010
Citation: LOU Jianyang, NAN Guofang and SONG Chuanchong. Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network[J]. Journal of Light Industry, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010

基于小波包分解和卷积神经网络的滚动轴承故障诊断

    作者简介:楼剑阳(1996-),男,浙江省绍兴市人,上海理工大学硕士研究生,主要研究方向为深度学习和旋转机械故障诊断.
  • 上海理工大学 能源与动力工程学院, 上海 200093
基金项目:  国家自然科学基金项目(91852117)

摘要: 针对旋转机械滚动轴承在恶劣工作环境中易于损坏,而目前故障诊断过于依赖人工特征提取的问题,提出了一种基于小波包分解和卷积神经网络(CNN)的滚动轴承故障诊断方法(WPDEC-CNN):通过小波包分解对振动时域信号进行处理,获得表征信号相似的小波系数,再将其进行预处理后输入CNN进行分类识别.试验结果表明,WPDEC-CNN的损失率低于BP神经网络和CNN,为0.108 9;WPDEC-CNN的故障分类准确率均高于BP神经网络和CNN,达到97.3%,验证了所提故障诊断方法的有效性.

English Abstract

参考文献 (20) 相关文章 (1)

目录

/

返回文章