JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 36 Issue 3
June 2021
Article Contents
GONG Yurong and LIU Huijuan. Further results on article of a class of matrices that can be diagonalized[J]. Journal of Light Industry, 2021, 36(3): 104-108. doi: 10.12187/2021.03.013
Citation: GONG Yurong and LIU Huijuan. Further results on article of a class of matrices that can be diagonalized[J]. Journal of Light Industry, 2021, 36(3): 104-108. doi: 10.12187/2021.03.013 shu

Further results on article of a class of matrices that can be diagonalized

  • Received Date: 2020-06-19
    Accepted Date: 2021-01-15
  • By utilizing the concepts and theories of singular value,tensor product,tensor sum and the connection of eigenvalue with determinant of matrices,another proof on theorem 2 in literature[1] was given,the singular value and spectral decomposition and the determinant of the matrix suited to A*=A2 were investigated,the conclusions were also obtained:(AB)*=(AB)2 on tensor product about two matrices A and B which satisfied the above condition,the relationship of eigenvalues of A* with A,the relationship between eigenvectors,and spectral decomposition formular of the matrice A.
  • 加载中
    1. [1]

      秦建国,谢栋梁,王静娜.一类可以对角化的矩阵[J].郑州轻工业学院学报(自然科学版),2013,28(2):106.

    2. [2]

      刘慧娟,曲双红.满足条件A*=-A3的矩阵性质研究[J].轻工学报,2020,35(6):105.

    3. [3]

      生成玉,刘威,吕琳琳.Hermite矩阵空间上保持幂等关系的映射[J].黑龙江大学学报(自然科学版),2017,34(3):259.

    4. [4]

      SALEM A.On the discrete q-Hermite matrix polynomials[J].International Journal of Applied and Computational Mathematics,2017,3(4):3147.

    5. [5]

      DEFEZ E,TUNG M M.A new type of Hermite matrix polynomial series[J].Quaestions Mathematiae,2018,41(2):205.

    6. [6]

      宋园.正定Hermite矩阵迹的不等式的几点注记[J].安庆师范大学学报(自然科学版),2019,25(2):40.

    7. [7]

      冯艳昭,张澜.两类矩阵方程的极小范数最小二乘三对角Hermite解[J].高等学校计算数学学报,2020,42(2):106.

    8. [8]

      BOROS T,ROZSA P.An explicit formula for singular values of the Sylvester-Kac matrix[J].Linear Algebra and its Applications,2007, 421(2):407.

    9. [9]

      于寅.高等工程数学[M].武汉:华中科技大学出版社,2001.

    10. [10]

      陈公宁.矩阵理论与应用[M].北京:科学出版社,2007.

Article Metrics

Article views(791) PDF downloads(5) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return