JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展

刘瑞雪 陈纪超 李迎博

刘瑞雪, 陈纪超, 李迎博. 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展[J]. 轻工学报, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013
引用本文: 刘瑞雪, 陈纪超, 李迎博. 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展[J]. 轻工学报, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013
LIU Ruixue, CHEN Jichao and LI Yingbo. Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction[J]. Journal of Light Industry, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013
Citation: LIU Ruixue, CHEN Jichao and LI Yingbo. Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction[J]. Journal of Light Industry, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013

基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展

    作者简介: 刘瑞雪(1971-),女,河南省范县人,郑州轻工业大学副教授,博士,主要研究方向为高分子水凝胶、功能高分子材料.;
  • 基金项目: 国家自然科学基金项目(21474092);河南省留学归国人员择优资助项目(002422)

  • 中图分类号: O63

Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction

  • Received Date: 2020-08-01
    Accepted Date: 2021-02-15

    CLC number: O63

  • 摘要: 综述了基于动态共价键、非共价键相互作用的自愈合水凝胶及其在伤口敷料和药物输送、组织工程、仿生电子皮肤、可穿戴电子设备方面的应用,对常用自愈合水凝胶的自愈机制进行概述,针对目前单一的基于动态共价键或动态非共价键相互作用机制的自愈合水凝胶仍然存在力学性能弱、自愈条件苛刻、不能完全恢复等不足,指出了未来自愈合水凝胶的设计研究方向:如可在多种环境下发生自愈行为的自愈合水凝胶的设计、动态共价/非共价相互作用结合的自愈合水凝胶的设计、自愈合水凝胶用于柔性电子器件等方面的研究等,以实现多机制、多功能型自愈合水凝胶的快速发展,促进其在生物材料、智能软材料方面应用的有效拓展.
    1. [1]

      ROWLAND M J,PARKINS C C,MCABEE J H, et al. An adherent tissue-inspired hydrogel delivery vehicle utilised in primary human glioma models[J]. Biomaterials,2018,179:199.

    2. [2]

      ZHANG W J,XU W G,NING C,et al. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia[J]. Biomaterials, 2018,181:378.

    3. [3]

      BROGUIERE N, ISENMANN L, ROGLER G, et al. Growth of epithelial organoids in a defined hydrogel[J]. Advanced Materials, 2018, 30(43):1801621.

    4. [4]

      QU J,ZHAO X,MA P X,et al. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy[J]. Acta Biomaterialia,2017,58:168.

    5. [5]

      SHI L Y,WANG F L,ZHU W,et al. Self-healing silk fibroin-based hydrogel for bone regeneration:dynamic metal-ligand self-assembly approach[J]. Advanced Functional Materials, 2017, 27(37):1700591.

    6. [6]

      TSENG T C, TAO L, HSIEH F Y, et al. An Injectable, self-healing hydrogel to repair the central nervous system[J]. Advanced Materials,2015,27:3518.

    7. [7]

      WANG Z F,REN Y P,ZHU Y,et al. A Rapidly self-healing host-guest supramolecular hydrogel with high mechanical strength and excellent biocompatibility[J]. Angewandte Chemie International Edition,2018,57:9008.

    8. [8]

      VAN DER KOOIJ H M,SUSA A,GARCIA S J, et al. Imaging the molecular motions of autonomous repair in a self-healing polymer[J]. Advanced Materials,2017,29(26):1701017.

    9. [9]

      GAEANIN J, HEDRICH J, SIESTE S, et al. Autonomous ultrafast self-healing hydrogels by pH-responsive functional nanofiber gelators as cell matrices[J]. Advanced Materials,2019,31(2):1805044.

    10. [10]

      LI C H, WANG C, KEPLINGER C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry,2016,8(6):619.

    11. [11]

      ZHANG Q H, NIU S M, WANG L, et al. An elastic autonomous self-healing capacitive sensor based on a dynamic dual cross-linked chemical system[J]. Advanced Materials,2018,30(33):1801435.

    12. [12]

      IMATO K,NISHIHARA M,KANEHARA T,et al. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature[J]. Angewandte Chemie International Edition, 2012, 51:1138.

    13. [13]

      LI Q W,LIU C L,WEN J R,et al. The design, mechanism and biomedical application of selfhealing hydrogels[J]. Chinese Chemical Letters,2017,28(9):1857.

    14. [14]

      DENG C C,BROOKS W L A,ABBOUD K A, et al. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH[J]. ACS Macro Letters,2015,4(2):220.

    15. [15]

      XU J, YANG D G, LI W J, et al. Phenylboronate-diol crosslinked polymer gels with reversible sol-gel transition[J]. Polymer, 2011, 52(19):4268.

    16. [16]

      WANG X F,ZHAO K F,HUANG X W,et al. Preparation and properties of self-healing polyether amines based on Diels-Alder reversible covalent bonds[J]. High Performance Polymers,2019,31(1):51.

    17. [17]

      CAI S Y,QIANG Z,ZENG C,et al. Multifunctional poly(lactic acid) copolymers with room temperature self-healing and rewritable shape memory properties via Diels-Alder reaction[J]. Materials Research Express,2019,6(4):045701.

    18. [18]

      WEI Y Y,MA X Y. The self-healing cross-linked polyurethane by Diels-Alder polymerization[J]. Advanced Polymer Technology,2018,37:1987.

    19. [19]

      PRATAMA P A, SHARIFI M, PETERSON A M,et al. Room temperature self-healing thermoset based on the Diels-Alder reaction[J]. ACS Applied Materials & Interfaces,2013,5:12425.

    20. [20]

      ZHANG L D,QIU T,ZHU Z Q,et al. Self-healing polycaprolactone networks through thermoinduced reversible disulfide bond formation[J]. Macromolecular Rapid Communications, 2018, 39(20):1800121.

    21. [21]

      XU Y R,CHEN D J. A Novel self-healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry and Physics, 2016, 217(10):1191.

    22. [22]

      GUADAGNO L, VERTUCCIO L, NADDEO C, et al. Self-healing epoxy nanocomposites via reversible hydrogen bonding[J]. Composites Part B:Engineering,2019,157:1.

    23. [23]

      ZHOU B H,HE D,HU J,et al. self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6:11725.

    24. [24]

      TAMATE R,HASHIMOTO K,HORII T,et al. Self-healing micellar ion gels based on multiple hydrogen bonding[J]. Advanced Materials, 2018,30(36):1802792.

    25. [25]

      LIU B C,WANG Y,MIAO Y,et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin[J]. Biomaterials,2018,171:83.

    26. [26]

      WANG X H,SONG F,XUE J,et al. Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry[J]. Polymer,2018,153:637.

    27. [27]

      ANDERSEN A, KROGSGAARD M, BIRKEDAL H, et al. Mussel-inspired self-healing doublecross-linked hydrogels by controlled combination of metal coordination and covalent cross-linking[J]. Biomacromolecules,2018,19:1402.

    28. [28]

      MIYAMAE K, NAKAHATA M, TAKASHIMA Y, et al. Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions[J]. Angewandte Chemie International Edition,2015,54:8984.

    29. [29]

      NAKAHATA M,TAKASHIMA Y,HARADA A, et al. Highly flexible, tough, and self-healing supramolecular polymeric materials using hostguest interaction[J]. Macromolecular Rapid Communications,2016,37:86.

    30. [30]

      TAKASHIMA Y, YONEKURA K, KOYANAGI K, et al. Multifunctional stimuli-responsive supramolecular materials with stretching, coloring, and self-healing properties functionalized via host-guest interactions[J]. Macromolecules, 2017,50:4144.

    31. [31]

      XIA N N,XIONG X M,RONG M Z,et al. Selfhealing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions[J]. ACS Applied Materials & Interfaces,2017,9:37300.

    32. [32]

      HOZUMI T, KAGEYAMA T, OHTA S, et al. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid crosslinked by Schiff's base formation[J]. Biomacromolecules,2018,19:288.

    33. [33]

      SHI J B,GUOBAO W,CHEN H L,et al. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment[J]. Polymer Chemistry, 2014, 5:6180.

    34. [34]

      WEI Z,YANG J H,LIU Z Q,et al. Novel Biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015,25:1352.

    35. [35]

      QU J,ZHAO X,LIANG Y P,et al. Antibacterial adhesive injectable hydrogels with rapid selfhealing, extensibility and compressibility as wound dressing for joints skin wound healing[J]. Biomaterials,2018,183:185.

    36. [36]

      YAN B,HUANG J,HAN L B,et al. Duplicating dynamic strain-stiffening behavior and nanomechanics of biological tissues in a synthetic selfHealing flexible network hydrogel[J]. ACS Nano,2017,11:11074.

    37. [37]

      APOSTOLIDES D E,SAKAI T,PATRICKIOS C S. Dynamic covalent star poly(ethylene glycol) model hydrogels:a new platform for mechanically robust, multifunctional materials[J]. Macromolecules,2017,50(5):2155.

    38. [38]

      ZHOU H W,XUE C G,WEIS P,et al. Photoswitching of glass transition temperatures of azobenzenecontaining polymers induces reversible solid-to-liquid transitions[J]. Nature Chemistry,2017,9:145.

    39. [39]

      PERERA M M, AYRES N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels[J]. Polymer Chemistry,2020,11(8):1410.

    40. [40]

      WU G F,JIN K Y,LIU L,et al. A rapid selfhealing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties[J]. Soft Matter,2020,16:3319.

    41. [41]

      JI F, LI J H,ZHANG G P,et al. Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds[J]. Polymer,2019,184:121882.

    42. [42]

      GUO R W, SU Q, ZHANG J W, et al. Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages[J]. Biomacromolecules, 2017,18(4):1356.

    43. [43]

      DENG G H,LI F Y,YU H X, et al. Dynamic hydrogels with an environmental adaptive selfhealing ability and dual responsive sol-gel transitions[J]. ACS Macro Letters, 2012, 1(2):275.

    44. [44]

      LIU Y L, CHUO T W. Self-healing polymers based on thermally reversible Diels-Alder chemistry[J]. Polymer Chemistry, 2013, 4(7):2194.

    45. [45]

      OEHLENSCHLAEGER K K, MUELLER J O, BRANDT J,et al. Adaptable Hetero diels-alder networks for fast self-healing under mild conditions[J]. Advanced Materials,2014,26(21):3561.

    46. [46]

      SHAO C Y,WANG M, CHANG H L, et al. A Self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction[J]. ACS Sustainable Chemistry & Engineering,2017,5(7):6167.

    47. [47]

      ZHAO W,YANG J H,DU X J,et al. Dextranbased self-healing hydrogels formed by reversible Diels-Alder reaction under physiological conditions[J]. Macromolecular Rapid Communications,2013,34(18):1464.

    48. [48]

      KIRCHHOF S, STRASSER A, WITTMANN H J,et al. New insights into the cross-linking and degradation mechanism of Diels-Alder hydrogels[J]. Journal of Materials Chemistry B,2015,3(3):449.

    49. [49]

      SMITH L J,TAIMOORY S M,TAM R Y,et al. Diels-Alder click-cross-linked hydrogels with increased reactivity enable 3D cell encapsulation[J]. Biomacromolecules,2018,19(3):926.

    50. [50]

      SHAO C Y,WANG M,CHANG H L,et al. A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction[J]. ACS Sustainable Chemistry & Engineering,2017,5(7):6167.

    51. [51]

      候冰娜,沈惠玲,李进,等. 基于动态化学键构建自愈合高分子水凝胶[J]. 材料工程,2020, 48(4):73.

    52. [52]

      LI T T, HU X M, ZHANG Q S, et al. Poly (acrylic acid)-chitosan@tannic acid doublenetwork self-healing hydrogel based on ionic coordination[J]. Polymers For Advanced Technologies,2020,31(7):1648.

    53. [53]

      CHEN W,BU Y H,LI D L,et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose[J]. Cellulose, 2020, 27(2):853.

    54. [54]

      YANAGISAWA Y, NAN Y, OKURO K, et al. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking[J]. Science,2018,359(6371):72.

    55. [55]

      SUN X X,LUO C H,LU F L,et al. Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength[J]. European Polymer Journal,2020, 124:109465.

    56. [56]

      CHEN J S, PENG Q Y, THUNDAT T, et al. Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics[J]. Chemistry of Materials,2019,31:4553.

    57. [57]

      KIM I L,MAUCK R L,BURDICK J A. Hydrogel design for cartilage tissue engineering:a case study with hyaluronic acid[J]. Biomaterials, 2011,32(34):8771.

    58. [58]

      SHAO C Y, CHANG H L, WANG M, et al. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds[J]. ACS Applied Materials & Interfaces,2017,9(34):28305.

    59. [59]

      姜国庆. 疏水改性聚丙烯酰胺水溶液和水凝胶的制备与性质研究[D]. 长春:吉林大学,2010.

    60. [60]

      ZHENG Q F,ZHAO L Y,WANG J, et al. Highstrength and high-toughness sodium alginate/polyacrylamide double physically crosslinked network hydrogel with superior self-healing and selfrecovery properties prepared by a one-pot method[J]. Colloids and Surfaces A, 2020, 589:124402.

    61. [61]

      YE L N,LV (LYU) Q,SUN X Y,et al. Fully physically cross-linked double network hydrogels with strong mechanical properties, good recovery and self-healing properties[J]. Soft Matter,2020,16:1840.

    62. [62]

      ZHOU Y, ZHANG Y H, DAI Z B, et al. A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a hostguest crosslinker[J]. Biomaterials Science, 2020,8(12):3359.

    63. [63]

      DENG Z X,GUO Y,ZHAO X,et al. Multifunctional stimuli-responsive hydrogels with selfhealing, high conductivity, and rapid recovery through host-guest interactions[J]. Chemistry of Materials,2018,30:1729.

    64. [64]

      ZHU Y,LIN L,CHEN Y,et al. A self-healing, robust adhesion, multiple stimuli-response hydrogel for flexible sensors[J]. Soft Matter,2020, 16:2238.

    65. [65]

      WU M,CHEN J S,HUANG W J,et al. Injectable and self-healing nanocomposite hydrogels with ultrasensitive pH-responsiveness and tunable mechanical properties:implications for controlled drug delivery[J]. Biomacromolecules, 2020,21(6):2409.

    66. [66]

      JING X,MI H Y,NAPIWOCKI B N,et al. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering[J]. Carbon,2017,125:557.

    67. [67]

      VAHEDI M,SHOKROLAHI F,BARZIN J,et al. Amylopectin multiple aldehyde crosslinked hydrogel as an injectable and self-healing cell carrier for bone tissue engineering[J]. Macromolecular Materials and Engineering, 2020, 305(4):2000045.

    68. [68]

      YANG R Y,YAO Y J,DUAN Z H,et al. Constructing electrically and mechanically self-healing elastomers by hydrogen bonded intermolecular network[J]. Langmuir,2020,36:3029.

    69. [69]

      LIU Y J,CAO W T,MA M G,et al. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic "soft and hard" hybrid networks[J]. ACS Applied Materials & Interfaces,2017,9(30):25559.

    70. [70]

      TIE J F,RONG L D,LIU H C,et al. An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as a multimodal sensor[J]. Polymer Chemistry, 2020, 11:1327.

    71. [71]

      MAO J,ZHAO C X,LI Y T,et al. Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel[J]. Composites Communications,2020,17:22.

    72. [72]

      HAN L L,LIU M F,YAN B,et al. Polydopamine/polystyrene nanocomposite double-layer strain sensor hydrogel with mechanical, selfhealing, adhesive and conductive properties[J]. Materials Science & Engineering C,2020, 109:110567.

    1. [1]

      刘瑞雪李义梦樊晓敏李迎博张浩然 . 魔芋葡甘聚糖基水凝胶的研究进展. 轻工学报, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003

    2. [2]

      樊凯奇苏振宁王书元赵帅韩光鲁余述燕张宝浩尹志刚宋健 . 基于非共价键作用构筑的白光凝胶研究进展. 轻工学报, 2018, 33(1): 56-71. doi: 10.3969/j.issn.2096-1553.2018.01.008

    3. [3]

      孙淑敏王培远吴琼 . 共价有机骨架材料应用研究进展. 轻工学报, 2016, 31(3): 21-32. doi: 10.3969/j.issn.2096-1553.2016.3.004

    4. [4]

      寇先勇吴燕王峣姿冯文博郑佳贝尤祥宇苏江涛 . 5种中药粗多糖水凝胶的制备及其促伤口愈合能力研究. 轻工学报, 2024, 39(2): 43-53. doi: 10.12187/2024.02.006

    5. [5]

      李蔚陈亚峰王艳军 . 动态散列算法及其改进. 轻工学报, 2011, 26(3): 92-95. doi: 10.3969/j.issn.1004-1478.2011.03.023

    6. [6]

      李刚森蔡立芳王培义陈帅王瑞娟 . 十二烷基硫酸钠与非离子表面活性剂AEO9/6501复配体系表面活性及动态表面张力研究. 轻工学报, 2016, 31(5): 51-57. doi: 10.3969/j.issn.2096-1553.2016.5.009

    7. [7]

      姜利英胡杰陈青华王芬芬岳保磊 . 基于核酸适体生物传感器的便携式循环伏安测试系统. 轻工学报, 2014, 29(2): 38-43. doi: 10.3969/j.issn.2095-476X.2014.02.011

    8. [8]

      刘瑞雪周腾樊晓敏李云秋冯皓泽 . 明胶基复合水凝胶研究进展. 轻工学报, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006

    9. [9]

      李永明李冬 . 基于综合负载动态分组的负载均衡算法研究. 轻工学报, 2012, 27(6): 28-31. doi: 10.3969/j.issn.2095-476X.2012.06.008

    10. [10]

      窦亚星张明明张杰樊霄艳 . 停车泊位动态分配算法的研究. 轻工学报, 2012, 27(6): 24-27. doi: 10.3969/j.issn.2095-476X.2012.06.007

    11. [11]

      张素智王朝辉孙培锋 . 基于动态更新ID的RFID安全认证协议研究. 轻工学报, 2011, 26(6): 1-4. doi: 10.3969/j.issn.1004-1478.2011.06.001

    12. [12]

      张雷李金学堵劲松李龙飞邹严颉张二强李善莲 . 基于DGRU网络的烘丝机筒壁温度动态预测. 轻工学报, 2022, 37(6): 85-91,100. doi: 10.12187/2022.06.011

    13. [13]

      孙淑敏周超吴琼王培远 . 三嗪基共价有机骨架/石墨烯复合材料的合成及其电化学性能研究. 轻工学报, 2018, 33(1): 43-48. doi: 10.3969/j.issn.2096-1553.2018.01.006

    14. [14]

      梁崇佳郭川磐冯孝中王明花张治红 . 基于AuNPs/rGO复合材料的电化学生物传感器用于Cu2+痕量检测的研究. 轻工学报, 2016, 31(1): 96-104. doi: 10.3969/j.issn.2096-1553.2016.1.015

    15. [15]

      任素云吉鸿飞张治红王明花何领好 . 多重金属离子检测用三维石墨烯电化学生物传感器敏感膜的构筑. 轻工学报, 2016, 31(3): 14-20. doi: 10.3969/j.issn.2096-1553.2016.3.003

    16. [16]

      王赫李晶晶魏宏亮王刚楚晖娟朱靖 . 水凝胶在缓/控释肥料中应用的研究进展. 轻工学报, 2017, 32(6): 43-55. doi: 10.3969/j.issn.2096-1553.2017.6.006

    17. [17]

      樊凯奇贾彩敬赵帅岳凡韩光鲁王利霞尹志刚宋健 . 高弹性双网络水凝胶的制备及其性能研究. 轻工学报, 2017, 32(6): 35-42. doi: 10.3969/j.issn.2096-1553.2017.6.005

    18. [18]

      刘瑞雪陈纪超李迎博周腾王亚玲 . 明胶/聚甲基丙烯酸复合水凝胶的制备及其性能研究. 轻工学报, 2020, 35(6): 50-59. doi: 10.12187/2020.06.007

    19. [19]

      刘瑞雪李迎博陈纪超 . 基于pH调节的CMCS-PMMS/PAAm复合水凝胶的构筑与性能研究. 轻工学报, 2021, 36(2): 64-73. doi: 10.12187/2021.02.009

    20. [20]

      许颖梅 . 基于动态滑动窗口的改进数据流聚类算法. 轻工学报, 2014, 29(1): 98-102. doi: 10.3969/j.issn.2095-476X.2014.01.021

  • 加载中
计量
  • PDF下载量:  52
  • 文章访问数:  2072
  • 引证文献数: 0
文章相关
  • 收稿日期:  2020-08-01
  • 修回日期:  2021-02-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
刘瑞雪, 陈纪超, 李迎博. 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展[J]. 轻工学报, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013
引用本文: 刘瑞雪, 陈纪超, 李迎博. 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展[J]. 轻工学报, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013
LIU Ruixue, CHEN Jichao and LI Yingbo. Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction[J]. Journal of Light Industry, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013
Citation: LIU Ruixue, CHEN Jichao and LI Yingbo. Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction[J]. Journal of Light Industry, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013

基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展

    作者简介:刘瑞雪(1971-),女,河南省范县人,郑州轻工业大学副教授,博士,主要研究方向为高分子水凝胶、功能高分子材料.
  • 郑州轻工业大学 材料与化学工程学院, 河南 郑州 450001
基金项目:  国家自然科学基金项目(21474092);河南省留学归国人员择优资助项目(002422)

摘要: 综述了基于动态共价键、非共价键相互作用的自愈合水凝胶及其在伤口敷料和药物输送、组织工程、仿生电子皮肤、可穿戴电子设备方面的应用,对常用自愈合水凝胶的自愈机制进行概述,针对目前单一的基于动态共价键或动态非共价键相互作用机制的自愈合水凝胶仍然存在力学性能弱、自愈条件苛刻、不能完全恢复等不足,指出了未来自愈合水凝胶的设计研究方向:如可在多种环境下发生自愈行为的自愈合水凝胶的设计、动态共价/非共价相互作用结合的自愈合水凝胶的设计、自愈合水凝胶用于柔性电子器件等方面的研究等,以实现多机制、多功能型自愈合水凝胶的快速发展,促进其在生物材料、智能软材料方面应用的有效拓展.

English Abstract

参考文献 (72) 相关文章 (20)

目录

/

返回文章