JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 1
March 2022
Article Contents
TIAN Ruijie, ZHANG Yong, FENG Dahong, et al. Study on spatial heterogeneity of active microbial community in strong-flavor Baijiu fermented grains based on metatranscriptome[J]. Journal of Light Industry, 2022, 37(1): 1-11. doi: 10.12187/2022.01.001
Citation: TIAN Ruijie, ZHANG Yong, FENG Dahong, et al. Study on spatial heterogeneity of active microbial community in strong-flavor Baijiu fermented grains based on metatranscriptome[J]. Journal of Light Industry, 2022, 37(1): 1-11. doi: 10.12187/2022.01.001 shu

Study on spatial heterogeneity of active microbial community in strong-flavor Baijiu fermented grains based on metatranscriptome

  • Received Date: 2021-06-02
  • In this study, the metatranscriptome technology was used to study the differences in the composition and genes functions of the physiologically active bacterial and fungal communities in the strong-flavor Baijiu fermented grains (FGs) at different spatial locations of pit. The results showed that 87 phyla, 78 classes, 165 orders, 396 families, 1612 genera and 7234 species were detected in the bacterial community, and 8 phyla, 26 classes, 58 orders, 127 families, 223 genera and 394 species were detected in the fungal community. However, there was little difference in the number of active microorganisms among the top, middle and bottom layers of FGs. There was no significant difference in the bacterial and fungal community composition in each layer of FGs, with Firmicutes and Ascomycota as the main dominant bacterial and fungal phylum, respectively. Bacillus and Saccharomyces were the main dominant bacterial and fungal class, respectively. Lactobacillus was the main dominant bacterial genera, Saccharomyces (top and bottom) or Scheffersomyces (middle) was the main dominant fungal genera. Furthermore, the number of differentially-expressed genes between the bottom and middle layer, and between the middle and upper layer of FGs was higher and it was 90 and 67 respectively. And the differentially-expressed genes were mainly concentrated in RNA degradation and Glycolysis/Gluconeogenesis pathway, and most of the difference gene function between each layer was metabolism. The active microbial flora in the middle FGs had the lowest effect on RNA degradation, and the active microbial flora in the bottom FGs contributed the most to the metabolic activity.
  • 加载中
    1. [1]

      HU X L, WANG K L, CHEN M E, et al.Profiling the composition and metabolic activities of microbial community in fermented grain for the Chinese strong-flavor Baijiu production by using the metatranscriptome, high-throughput 16S rRNA and ITS gene sequencings[J].Food Research International, 2020, 138:109765.

    2. [2]

      HU X L, DU H, REN C, et al.Illuminating anaerobic microbial community and cooccurrence patterns across a quality gradient in Chinese liquor fermentation pit muds[J].Applied Environmental Microbiology, 2016, 82(8):2506-2520.

    3. [3]

      WANG X S, DU H, XU Y.Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor[J].International Journal of Food Microbiology, 2017, 244:27-35.

    4. [4]

      LIU J, WU Q, WANG P, et al.Synergistic effect in core microbiota associated with sulfur metabolism in spontaneous Chinese liquor fermentation[J].Applied Environmental Microbiology, 2017, 83(24):1475-1491.

    5. [5]

      胡晓龙, 王康丽, 余苗, 等.浓香型酒醅微生物菌群演替规律及其空间异质性[J].食品与发酵工业, 2020, 46(10):66-71.

    6. [6]

      LI X R, MA E B, YAN L Z, et al.Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J].International Journal of Food Microbiology, 2011, 146(1):31-37.

    7. [7]

      SONG Z W, DU H, ZHANG Y, et al.Unraveling core functional microbiota in traditional solid-state fermentation by high-throughput amplicons and metatranscriptomics sequencing[J].Frontiers in Microbiology, 2017, 8:1294.

    8. [8]

      刘念, 刘绪, 张磊, 等.浓香型白酒糟醅中真菌菌群的研究[J].食品与发酵科技, 2011, 47(2):28-31.

    9. [9]

      黄治国, 罗惠波, 侯海波, 等.浓香型白酒酒醅细菌群落结构及其变化规律[J].中国酿造, 2012, 31(3):100-104.

    10. [10]

      ZHANG W X, QIAO Z W, TANG Y Q, et al.Analysis of the fungal community in Zaopei during the production of Chinese Luzhou-flavour liquor[J].Journal of the Institute of Brewing, 2012, 113(1):21-27.

    11. [11]

      肖辰, 陆震鸣, 张晓娟, 等.泸型酒酒醅细菌群落的发酵演替规律[J].微生物学报, 2019, 59(1):195-204.

    12. [12]

      肖辰, 陆震鸣, 张晓娟, 等.泸型酒中层酒醅真菌群落的发酵演替规律[J].应用与环境生物学报, 2018, 24(5):1081-1086.

    13. [13]

      刘凡, 周新虎, 陈翔, 等.洋河浓香型白酒发酵过程酒醅微生物群落结构解析及其与有机酸合成的相关性[J].微生物学报, 2018, 58(12):2087-2099.

    14. [14]

      翟磊, 于学健, 冯慧军, 等.宜宾产区浓香型白酒酿造生境中细菌的群落结构[J].食品与发酵工业, 2020, 46(2):18-24.

    15. [15]

      ZHANG Y Y, ZHU X Y, LI X Z, et al.The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor[J].BMC Microbiology, 2017, 17(1):196.

    16. [16]

      BALDRIAN P, KOLAÍK M, TURSOVÁ M, et al.Active and total microbial communities in forest soil are largely different and highly stratified during decomposition[J].The ISME Journal, 2012, 6:248-258.

    17. [17]

      DUAN S, HU X X, LI M R, et al.Composition and metabolic activities of the bacterial community in shrimp sauce at the flavor-forming stage of fermentation as revealed by metatranscriptome and 16S rRNA gene sequencings[J].Journal of Agricultural Food Chemistry, 2016, 64(12):2591-2603.

    18. [18]

      韩丽丽, 吴娟, 马燕天, 等.环境微生物转录组学研究进展[J].基因组学与应用生物学, 2017, 36(12):5210-5216.

    19. [19]

      雷忠华, 陈聪聪, 陈谷.基于宏基因组和宏转录组的发酵食品微生物研究进展[J].食品科学, 2018, 39(3):330-337.

    20. [20]

      赵东, 乔宗伟, 彭志云.浓香型白酒发酵过程中酒醅微生物区系及其生态因子演变研究[J].酿酒科技, 2007(7):37-39.

    21. [21]

      张大凤, 李可, 刘森, 等.中国浓香型白酒窖池糟醅中微生物群落演替分析[J].食品科学, 2012, 33(15):183-187.

    22. [22]

      吕辉, 张宿义, 冯治平, 等.浓香型白酒发酵过程中微生物消长与香味物质变化研究[J].食品与发酵科技, 2010, 46(3):37-40
      , 59.

    23. [23]

      王雪山, 杜海, 徐岩.清香型白酒发酵过程中微生物种群空间分布[J].食品与发酵工业, 2018, 44(9):1-8.

    24. [24]

      王鹏, 蒋超, 常强, 等.绵甜型白酒酿造过程中酒醅理化指标的变化规律[J].酿酒科技, 2019(3):59-64.

    25. [25]

      杨静, 宰红玉, 万春环, 等.浓香型白酒窖池内酒醅成分动态分析研究[J].酿酒, 2018, 45(1):55-59.

    26. [26]

      胡晓龙, 王康丽, 宋丽丽, 等.浓香型白酒酒醅中总RNA提取方法评价[J].食品科学, 2021, 42(2):74-82.

    27. [27]

      DEWEY C N, LI B.RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J].BMC Bioinformatics, 2011, 12(1):323.

    28. [28]

      王陶, 李华, 王华, 等.酒酒球菌(Oenococcus oeni)相关生物组学研究进展[J].食品科学, 2014, 35(7):305-310.

    29. [29]

      TOMÁŠ V, PETR B.The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses[J].PLoS ONE, 2013, 8(2):e57923.

    30. [30]

      PAI A, YOU L.Optimal tuning of bacterial sensing potential[J].Molecular Systems Biology, 2014, 5:286.

    31. [31]

      WATERHOUSE A L, SACKS G L, JEFFERY D W.Glycolysis[M].New Jersey:Wihey, 2016.

    32. [32]

      KHALIFA F.Regulation of gluconeogenesis and pentose phosphate pathway by intracellular and external metabolic regulators:A review[J].European Journal of Biochemistry, 2015, 2(5):206-213.

    33. [33]

      徐巧林, 吴文良, 赵桂慎, 等.微生物硒代谢机制研究进展[J].微生物学通报, 2017, 44(1):207-216.

Article Metrics

Article views(2949) PDF downloads(80) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return