JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 2
May 2022
Article Contents
ZHANG Kaiyang, XIAO Yuanhua, WU Shide, et al. Preparation and electrochemical properties of manganese carbonate nanoplate arrays[J]. Journal of Light Industry, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016
Citation: ZHANG Kaiyang, XIAO Yuanhua, WU Shide, et al. Preparation and electrochemical properties of manganese carbonate nanoplate arrays[J]. Journal of Light Industry, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016 shu

Preparation and electrochemical properties of manganese carbonate nanoplate arrays

  • Received Date: 2021-04-14
    Accepted Date: 2021-05-25
  • In order to increase the working voltage of the aqueous zinc ion batteries with manganese-based material as the positive electrode material, an ultrathin nanosheet array (MnCO3 NA) was grown on a nickel foam substrate by a one-step solvothermal method. The structure, morphology and electrochemical properties of MnCO3 NA were characterized by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope and battery performance tester. The experiments results showed that the thickness of the MnCO3 NA was about 30 nm and the height was about 500 nm. It was directly applied to the zinc ion battery in the alkaline electrolyte, delivering a high working voltage of 1.73 V, a specific discharge capacity of 255.41 mAh/g at 0.1 A/g, and a capacity retention of 83.1% after 270 charge-discharge cycles at 0.5 A/g. In addition, the zinc storage mechanism of the electrode was a mono-phase reaction from Mn2+ to Mn3+, which was analyzed by ex-situ XRD and photoelectron spectroscopy at different potential states.
  • 加载中
    1. [1]

      ZENG X H,HAO J N,WANG Z J,et al.Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J].Energy Storage Materials,2019,20:410-437.

    2. [2]

      常立民,林丽,聂平.水系锌离子电池:金属锌负极研究进展[J].吉林师范大学学报(自然科学版),2021,42(3): 8-15.

    3. [3]

      张涛,周坤蕃,阳思念,等. Al3+预嵌(NH4)2V10O25·8H2O正极材料在水系锌离子电池的应用[J].精细化工,2022,39(2):282-287.

    4. [4]

      戴宇航,甘志伟,阮雨杉,等.水系锌离子电池及关键材料研究进展[J]. 硅酸盐学报,2021,49(7):1323-1336.

    5. [5]

      SELVAKUMARAN D,PAN A Q,LIANG S Q,et al.A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J].Journal of Materials Chemistry A,2019,7(31):18209-18236.

    6. [6]

      KONAROV A,VORONINA N,JO J H,et al.Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J].ACS Energy Letters,2018,3(10):2620-2640.

    7. [7]

      SUN T J,NIAN Q S,ZHENG S B,et al.Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery[J].Small,2020,16(17):2000597.

    8. [8]

      翟小亮,柳勇,王飞,等.水基锌离子电池钒基正极材料研究进展[J].化学工业与工程,2020,37(5):37-45.

    9. [9]

      衡永丽,谷振一,郭晋芝,等.水系锌离子电池用钒基正极材料的研究进展[J].物理化学学报, 2021,37(3):17-32.

    10. [10]

      LUO Y W,ZHENG F P,LIU L J,et al.A high-power aqueous zinc-organic radical battery with tunable operating voltage triggered by selected anions[J].ChemSusChem,2020,13(9):2239-2244.

    11. [11]

      TIE Z W,LIU L J,DENG S Z,et al.Proton insertion chemistry of a zinc-organic battery[J]. Angewandte Chemie International Edition, 2020, 59(12): 4920-4924.

    12. [12]

      HUANG J H,GUO Z W,MA Y Y,et al.Recent progress of rechargeable batteries using mild aqueous electrolytes[J].Small Methods,2019,3(1):1800272.

    13. [13]

      陈均桄.水系锌离子二次电池正极锰基化合物研究进展[J].南宁师范大学学报(自然科学版),2020, 37(1): 75-80.

    14. [14]

      周世昊,吴贤文,向延鸿,等.水系锌离子电池锰基正极材料[J].化学进展, 2021,33(4):649-669.

    15. [15]

      WANG X W,WANG F X,WANG L Y,et al.An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior[J].Advanced Materials,2016,28(24):4904-4911.

    16. [16]

      LIU D,HUR S H,CHUNG J S,et al.Fabrication of g-C3N4 quantum Dots/MnCO3 nanocomposite on carbon cloth for flexible supercapacitor electrode[J].Applied Sciences,2020,10(21):7927.

    17. [17]

      KARUPPAIAH M,SAKTHIVEL P,ASAITHAMBI S,et al.Formation of one dimensional nanorods with microsphere of MnCO3 using Ag as dopant to enhance the performance of pseudocapacitors[J].Materials Chemistry and Physics,2019,228:1-8.

    18. [18]

      LYU Y N,DONG G X,KANG J R,et al.MnF2-Ni and MnCO3-Ni derived from the same raw materials for high-performance supercapacitor[J].Materials Letters,2018,215:125-128.

    19. [19]

      FENG X Y,SHEN Q,SHI Y C,et al.One-pot hydrothermal synthesis of core-shell structured MnCO3@C as anode material for lithium-ion batteries with superior electrochemical performance[J].Electrochimica Acta,2016,220:391-397.

    20. [20]

      CHEN H,YAN Z,LIU X Y,et al.Rational design of microsphere and microcube MnCO3@MnO2 heterostructures for supercapacitor electrodes[J]. Journal of Power Sources,2017,353:202-209.

    21. [21]

      JANA M,SAMANTA P,CHANDRA MURMU N,et al.Morphology controlled synthesis of MnCO3-RGO materials and their supercapacitor applications[J].Journal of Materials Chemistry A,2017,5(25):12863-12872.

    22. [22]

      QIU W D,LI Y,YOU A,et al.High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth[J].Journal of Materials Chemistry A,2017,5(28):14838-14846.

    23. [23]

      RAJENDIRAN R,MUTHUCHAMY N,PARK K H,et al.Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions[J].Journal of Colloid and Interface Science,2020,566:224-233.

    24. [24]

      LI T,LI M Q,LI H,et al.The construction of a novel rechargeable Zn(OH)42- ion battery[J].Materials Letters,2020,273:127989.

    25. [25]

      GAO X,WU H W,LI W J,et al.H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery[J].Small,2020,16(5):1905842.

    26. [26]

      TAN Q Y,LI X T,ZHANG B,et al.Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery[J].Advanced Energy Materials,2020,10(38):2001050.

    27. [27]

      ISLAM S,ALFARUQI M H,SONG J,et al.Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J].Journal of Energy Chemistry,2017,26(4):815-819.

    28. [28]

      YUAN T C,ZHANG J X,PU X J,et al.Novel alkaline Zn/Na0.44MnO2 dual-ion battery with a high capacity and long cycle lifespan[J].ACS Applied Materials & Interfaces,2018,10(40):34108-34115.

    29. [29]

      SEO J K,SHIN J,CHUNG H,et al.Intercalation and conversion reactions of nanosized β-MnO2 cathode in the secondary Zn/MnO2 alkaline battery[J].The Journal of Physical Chemistry C,2018,122(21):11177-11185.

    30. [30]

      PAN J Q,SUN Y,WANG Z H,et al.Mn3O4 doped with nano-NaBiO3: A high capacity cathode material for alkaline secondary batteries[J].Journal of Alloys and Compounds,2009,470(1/2):75-79.

    31. [31]

      WEI T Y,LI Q,YANG G Z,et al.Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts[J].Journal of Materials Chemistry A,2018,6(41):20402-20410.

    32. [32]

      WAN F,ZHANG L L,DAI X,et al.Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J].Nature Communications,2018,9(1):1-11.

    33. [33]

      CHAI H J,ZHANG Z M,ZHOU Y Q,et al.Roles of intrinsic Mn3+ sites and lattice oxygen in mechanochemical debromination and mineralization of decabromodiphenyl ether with manganese dioxide[J].Chemosphere,2018,207:41-49.

    34. [34]

      KARUPPAIAH M,AKILAN R,SAKTHIVEL P,et al.Synthesis of self-assembled micro/nano structured manganese carbonate for high performance, long lifespan asymmetric supercapacitors and investigation of atomic-level intercalation properties of OH- ions via first principle calculation[J].Journal of Energy Storage,2020,27:101138.

    35. [35]

      CAO Z X,DING Y M,ZHANG J,et al.Submicron peanut-like MnCO3 as an anode material for lithium ion batteries[J]. RSC Advances,2015,5(69):56299-56303.

    36. [36]

      史金涛,余传军,李倩.锂离子电池在不同倍率循环的阻抗特性研究[J].电源技术, 2021,45(11):1409-1411.

    37. [37]

      庄全超,杨梓,张蕾,等.锂离子电池的电化学阻抗谱分析研究进展[J].化学进展, 2020,32(6):761-791.

    38. [38]

      TANG Y F,CHEN S J,CHEN T,et al.Synthesis of peanut-like hierarchical manganese carbonate microcrystals via magnetically driven self-assembly for high performance asymmetric supercapacitors[J].Journal of Materials Chemistry A,2017,5(8):3923-3931.

    39. [39]

      ZHANG Y Q,TAO L,XIE C,et al.Defect engineering on electrode materials for rechargeable batteries[J].Advanced Materials,2019,32(7):1905923.

Article Metrics

Article views(1235) PDF downloads(21) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return