JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 6
December 2022
Article Contents
YANG Wenjian, XU Zhengli, YAO Li, et al. Research progress in regulation of macrophage polarization by food-derived active peptides[J]. Journal of Light Industry, 2022, 37(6): 1-10. doi: 10.12187/2022.06.001
Citation: YANG Wenjian, XU Zhengli, YAO Li, et al. Research progress in regulation of macrophage polarization by food-derived active peptides[J]. Journal of Light Industry, 2022, 37(6): 1-10. doi: 10.12187/2022.06.001 shu

Research progress in regulation of macrophage polarization by food-derived active peptides

  • Received Date: 2022-05-09
  • Based on the brief introduction of the characteristics food-derived active peptides and immunomodulation principle of macrophage, the source and preparation of food-derived active peptides, the phenomenon of macrophage polarization, and the mechanism of food-derived active peptides regulating macrophage polarization to exert immunomodulatory effects were highlighted in the review. It pointed out that food-derived active peptides mainly included animal sources, plant sources, microbial sources and other active peptides, and their preparation methods mainly included enzymatic hydrolysis, physical assisted enzymatic hydrolysis, microbial fermentation, microbial-enzyme synergy. The microbial-enzyme synergy method had the advantages of improving the degree of hydrolysis, conversion rate of protein and the quality of extracted peptide, which was a good method to prepare food-derived active peptides. Food-derived active peptides could regulate macrophage polarization to play an immunomodulatory role. The signal pathways including NF-κB, MAPK, and TLR4/MyD88, which were important for regulating the polarization of macrophages. However, due to the complex relationship between macrophages and health, in the future, metabolomics, gene knockout and other new technologies should be used to study the effect of food-derived active peptides on regulating macrophage polarization and health from the aspects of macrophage functional diversity and synergistic effect of signaling pathways. It was expected that this review was able to provide theoretical basis for the application of food-derived active peptides in functional food.
  • 加载中
    1. [1]

      ERDMNN K,CHEUNG B W Y,SCHRÖDER H.The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease[J].The Journal of Nutritional Biochemistry,2008,19(10):643-654.

    2. [2]

      DE CASTRO R J S,SATO H H.Biologically active peptides:Processes for their generation,purification and identification and applications as natural additives in the food and pharmaceutical industries[J].Food Research International,2015,74:185-198.

    3. [3]

      SOSALAGERE C,KEHINDE B A,SHARMA P.Isolation and functionalities of bioactive peptides from fruits and vegetables:A reviews[J].Food Chemistry,2022,366:130494.

    4. [4]

      SHAHIDI F,ZHONG Y.Bioactive peptides[J].Journal of AOAC International,2008,91(4):914-931.

    5. [5]

      SÁNCHEZ A,VÁZQUEZ A.Bioactive peptides:A review[J].Food Quality and Safety,2017,1(1):29-46.

    6. [6]

      CHALAMAIAH M,YU W L,WU J P.Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins:A review[J].Food Chemistry,2018,245:205-222.

    7. [7]

      LOCATI M,CURTALE G,MANTOVANI A.Diversity,mechanisms,and significance of macrophage plasticity[J].Annual Review of Pathology(Mechanisms of Disease),2020,15:123-147.

    8. [8]

      BLÉRIOT C,CHAKAROV S,GINHOUX F.Determinants of resident tissue macrophage identity and function[J].Immunity,2020,52(6):957-970.

    9. [9]

      THAPA B,LEE K.Metabolic influence on macrophage polarization and pathogenesis[J].BMB Reports,2019,52(6):360-372.

    10. [10]

      HE W,HEINZ A,JAHN D,et al.Complexity of macrophage metabolism in infection[J].Current Opinion in Biotechnology,2021,68:231-239.

    11. [11]

      魏颖,谷瑞增,林峰,等.乌鸡肽免疫调节作用的研究[J].食品研究与开发,2014,35(16):1-5.

    12. [12]

      纪丽娜.金枪鱼头酶解物免疫活性肽的分离及对小鼠腹腔巨噬细胞功能的影响[D].湛江:广东海洋大学,2012.

    13. [13]

      于弋涵.猴头菇活性肽的制备及其免疫调节作用研究[D].南京:南京财经大学,2021.

    14. [14]

      ZHU B Y,HE H,HOU T.A comprehensive review of corn protein-derived bioactive peptides:Production,characterization,bioactivities,and transport pathways[J].Comprehensive Reviews in Food Science and Food Safety,2019,18(1):329-345.

    15. [15]

      LEE J H,PAIK H D.Anticancer and immunomodulatory activity of egg proteins and peptides:A review [J].Poultry Science,2019,98(12):6505-6516.

    16. [16]

      王溢,袁宏丽,陈栋梁.食源性多肽在特殊医学食品中的应用前景[J].食品研究与开发,2015,36(6):132-134.

    17. [17]

      王蓓,唐艳斌,张炎,等.牛乳中乳清蛋白质的功能活性研究进展[J].中国食品学报,2021,21(9):366-373.

    18. [18]

      王磊,成雪,毛学英.乳清蛋白及其活性多肽的生物学功能研究进展[J].中国农业科技导报,2010,12(5):30-35.

    19. [19]

      巫楚君.黄鳍金枪鱼酶解肽的制备、鉴定及其对RAW264.7细胞免疫调节活性研究[D].广州:广东药科大学,2021.

    20. [20]

      胡旭阳.日本黄姑鱼肉活性肽的制备及其免疫调节作用研究[D].舟山:浙江海洋大学,2019.

    21. [21]

      卜天.虾蛄多肽免疫活性的研究及功能产品的开发[D].舟山:浙江海洋学院,2015.

    22. [22]

      叶盛旺,杨最素,李维,等.青蛤酶解多肽对RAW264.7巨噬细胞的免疫调节作用[J].食品科学,2019,40(7):185-191.

    23. [23]

      王敏,卢赛,张曾亮,等.鲍鱼水解肽的抗氧化、抗炎及免疫调节作用[J].食品工业科技,2021,42(5):282-288.

    24. [24]

      郝云涛,珠娜,刘欣然,等.菠萝蜜低聚肽的免疫调节作用研究[J].食品工业科技,2020,41(7):284-294.

    25. [25]

      王睿晗,黄永震,王周利,等.食源性生物活性肽免疫调节功能的研究[J].基因组学与应用生物学,2019,38(1):148-152.

    26. [26]

      王鹏.榛仁免疫活性肽结构解析及其对炎症反应的免疫调节作用[D].长春:吉林农业大学,2018.

    27. [27]

      姬中伟.小米醇溶蛋白肽的制备及其抗氧化与抗炎活性研究[D].无锡:江南大学,2020.

    28. [28]

      FANG L,REN D Y,CUI L Y,et al.Antifatigue,antioxidant and immunoregulatory effects of peptides hydrolyzed from Manchurian walnut (Juglans mandshurica Maxim.) on mice[J].Grain & Oil Science and Technology,2018,1(1):44-52.

    29. [29]

      ZHANG Y R,WANG D W,CHEN Y T,et al.Healthy function and high valued utilization of edible fungi[J].Food Science and Human Wellness,2021,10(4):408-420.

    30. [30]

      SUN Y N,ZHANG M,FANG Z X.Efficient physical extraction of active constituents from edible fungi and their potential bioactivities:A review[J].Trends in Food Science & Technology,2020,105:468-482.

    31. [31]

      孔祥辉.金针菇免疫调节蛋白(FIP-fve)表达特性及活性特征研究[D].哈尔滨:东北林业大学,2013.

    32. [32]

      MARIGA A M.杏鲍菇蛋白抗氧化活性、抗增殖活性及免疫调节活性研究[D].南京:南京农业大学,2014.

    33. [33]

      ALBOOFETILEH M,HAMZEH A,ABDOLLAHI M.Seaweed proteins as a source of bioactive peptides[J].Current Pharmaceutical Design,2021,27(11):1342-1352.

    34. [34]

      ANAL A K.Food processing by-products and their utilization:Introduction[M].New York:John Wiley & Sons Ltd,2017.

    35. [35]

      赵雅静.鱼鳞胶原多肽的制备及其功能特性研究[D].兰州:兰州理工大学,2021.

    36. [36]

      姜云松.白酒酒糟中功能性多肽的提取纯化鉴定及活性测定[D].北京:北京工商大学,2020.

    37. [37]

      刘盼,陈晓磊,陈夫山.复合蛋白酶水解法制备麦麸多肽及其抗氧化性能研究[J].齐鲁工业大学学报,2018,32(3):1-6.

    38. [38]

      王耀冉,陈明杰,李治平,等.生物活性肽制备、鉴定及其生物活性研究进展[J].食品工业,2021,42(12):349-354.

    39. [39]

      党仪安,王文亮,弓志青,等.食用菌生物活性肽制备及功能活性研究进展[J].食品工业,2019,40(8):228-231.

    40. [40]

      李素云,覃颖泉,谢冬梅,等.超声辅助酶解大米多肽的制备及其对酵母细胞增殖性影响[J].食品工业,2020,41(3):126-129.

    41. [41]

      杨晨,孔凡,雷芬芬,等.球磨辅助酶解制备南瓜籽ACE抑制肽[J].中国油脂,2021,46(9):22-27.

    42. [42]

      涂丹,张益奇,张燕平,等.汽爆辅助酶解制备鱼皮ACE抑制肽工艺优化[J].食品研究与开发,2020,41(8):67-74.

    43. [43]

      胡晓利,布冠好.高压均质与酶法联合改性对大豆蛋白抗原性及结构的影响[J].河南工业大学学报(自然科学版),2018,39(6):29-35.

    44. [44]

      李菊芳,魏芳,董绪燕,等.微波辅助分步酶解菜籽粕制备菜籽多肽的研究[J].中国油脂,2010,35(3):18-22.

    45. [45]

      WEN C T,ZHANG J X,ZHANG H H,et al.Plant protein-derived antioxidant peptides:Isolation,identification,mechanism of action and application in food systems:A review[J].Trends in Food Science & Technology,2020,105:308-322.

    46. [46]

      WANG W Q,LIU Z C,LIU Y J,et al.Plant polypeptides:A review on extraction,isolation,bioactivities and prospects[J].International Journal of Biological Macromolecules,2022,207:169-178.

    47. [47]

      ULUG S K,JAHANDIDEH F,WU J P.Novel technologies for the production of bioactive peptides[J].Trends in Food Science & Technology,2021,108:27-39.

    48. [48]

      门德盈,代佳和,汤木果,等.核桃肽制备及生物活性的研究进展[J/OL].食品科学:1-15[2022-09-13
      ].http://kns.cnki.net/kcms/detail/11.2206.TS.20220414.1427.112.html.

    49. [49]

      吴燕燕,霍玉梅,胡晓.海洋生物源DPP-Ⅳ抑制肽的制备和构效关系的研究进展[J].上海海洋大学学报,2022,31(4):1-13.

    50. [50]

      王銮.混菌固态发酵毛榛仁粕制备降血压肽及其纯化与结构鉴定[D].哈尔滨:东北林业大学,2018.

    51. [51]

      邵家威.芝麻粕蛋白肽制备分离及活性研究[D].济南:济南大学,2021.

    52. [52]

      WENG Z B,CHEN Y R,LIANG T T,et al.A review on processing methods and functions of wheat germ-derived bioactive peptides[J].Critical Reviews in Food Science and Nutrition,2021,12:1-17.

    53. [53]

      李晓杰,李富强,朱丽萍,等.生物活性肽的制备与鉴定进展[J].齐鲁工业大学学报,2021,35(1):23-28.

    54. [54]

      叶国栋,潘婉莲,柯婉,等.菌酶协同下的低温压榨菜籽粕抗氧化肽制备工艺研究[J].食品工业科技,2018,39(2):134-140.

    55. [55]

      王雪琦.羊骨胶原肽-钙螯合物的酶解-发酵法制备及其结构表征和相关性质分析[D].兰州:甘肃农业大学,2020.

    56. [56]

      YANG H,QU Y Z,LI J T,et al.Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis[J].LWT-Food Science and Technology,2020,128:109442.

    57. [57]

      SHAPOURI MOGHADDAM A,MOHAMMADIAN S,VAZINI H,et al.Macrophage plasticity,polarization,and function in health and disease[J].Journal of Cellular Physiology,2018,233(9):6425-6440.

    58. [58]

      WILLIAMS J W,GIANNARELLI C,RAHMAN A,et al.Macrophage biology,classification,and phenotype in cardiovascular disease JACC macrophage in CVD series (part 1)[J].Journal of the American College of Cardiology,2018,72(18):2166-2180.

    59. [59]

      ITALIANI P,BORASCHI D.From monocytes to M1/M2 macrophages:Phenotypical vs.functional differentiation[J].Frontiers in Immunology,2014,5:514.

    60. [60]

      SHI L B,JIANG Q K,BUSHKIN Y,et al.Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection[J].Mbio,2019,10(2):e02550-18.

    61. [61]

      CHEN Y N,HU M R,WANG L,et al.Macrophage M1/M2 polarization[J].European Journal of Pharmacology,2020,877:173090.

    62. [62]

      TARDITO S,MARTINELLI G,SOLDANO S,et al.Macrophage M1/M2 polarization and rheumatoid arthritis:A systematic review[J].Autoimmunity Reviews,2019,18(11):102397.

    63. [63]

      CHEN T T,CAO Q,WANG Y P,et al.M2 macrophages in kidney disease:Biology,therapies,and perspectives[J].Kidney International,2019,95(4):760-773.

    64. [64]

      DUAN J,LIU X S,WANG H L,et al.The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice[J].Reproductive Biomedicine Online,2018,37(3):254-268.

    65. [65]

      WANG L X,ZHANG S X,WU H J,et al.M2b macrophage polarization and its roles in diseases[J].Journal of Leukocyte Biology,2019,106(2):345-358.

    66. [66]

      SATOMI M,JUN-ICHIRO S,MIYUKI T,et al.S-1-Propenylcysteine promotes IL-10-induced M2c macrophage polarization through prolonged activation of IL-10R/STAT3 signaling[J].Scientific Reports,2021,11(1):22469.

    67. [67]

      ARORA S,DEV K,AGARWAL B,et al.Macrophages:Their role,activation and polarization in pulmonary diseases[J].Immunobiology,2018,223(4/5):383-396.

    68. [68]

      SATOH T,TAKEUCHI O,VANDENBON A,et al.The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection[J].Nature Immunology,2010,11(10):936-944.

    69. [69]

      GEISS C,SALAS E,GUEVARA-COTO J,et al.Multistability in macrophage activation pathways and metabolic implications[J].Cells,2022,11(3):404.

    70. [70]

      LOUISELLE A E,NIEMIEC S M,ZGHEIB C,et al.Macrophage polarization and diabetic wound healing[J].Translational Research,2021,236:109-116.

    71. [71]

      VERGADI E,IERONYMAKI E,LYRONI K,et al.Akt signaling pathway in macrophage activation and M1/M2 polarization[J].The Journal of Immunology,2017,198(3):1006-1014.

    72. [72]

      阮静瑶,陈必成,张喜乐,等.巨噬细胞M1/M2极化的信号通路研究进展[J].免疫学杂志,2015,31(10):911-917.

    73. [73]

      JI Z W,MAO J Q,CHEN S G,et al.Antioxidant and anti-inflammatory activity of peptides from foxtail millet (Setaria italica) prolamins in HaCaT cells and RAW264.7 murine macrophages[J].Food Bioscience,2020,36:100636.

    74. [74]

      曹靖文.纳豆菌糖肽对小鼠巨噬细胞的免疫调节作用及相关机理的研究[D].南昌:江西农业大学,2015.

    75. [75]

      成雪.酪蛋白糖肽抑制巨噬细胞炎症反应的分子机制研究[D].北京:中国农业大学,2015.

    76. [76]

      叶蕾.文蛤寡肽的免疫调节作用研究[D].舟山:浙江海洋大学,2019.

    77. [77]

      迟治平.不同级分绿豆肽对RAW264.7细胞免疫调节作用的研究[D].大庆:黑龙江八一农垦大学,2020.

    78. [78]

      RAO K M K.MAP kinase activation in macrophages [J].Journal of Leukocyte Biology,2001,69(1):3-10.

    79. [79]

      LIU Y S,SHEPHERD E G,NELIN L D.MAPK phosphatases-regulating the immune response[J].Nature Reviews Immunology,2007,7(3):202-212.

    80. [80]

      HE K,ZENG Y,TIAN H,et al.Macrophage immunomodulatory effects of low molecular weight peptides from Mytilus coruscus via NF-κB/MAPK signaling pathways[J].Journal of Functional Foods,2021,83:104562-104574.

    81. [81]

      GAO R C,SHU W H,SHEN Y,et al.Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway[J].Journal of Functional Foods,2020,72:104044.

    82. [82]

      CIAN R E,HERNÁNDEZ-CHIRLAQUE C,GÁMEZ-BELMONTE R,et al.Green alga Ulva spp.hydrolysates and their peptide fractions regulate cytokine production in splenic macrophages and lymphocytes involving the TLR4-NF-κB/MAPK pathways[J].Marine Drugs,2018,16(7):235-250.

    83. [83]

      YI G F,LI H,LIU M L,et al.Soybean protein-derived peptides inhibit inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPK-JNK and NF-κB activation[J].Journal of Food Biochemistry,2020,44(8):e13289-e13299.

    84. [84]

      SONG J J,LI T G,CHENG X,et al.Sea cucumber peptides exert anti-inflammatory activity through suppressing NF-κB and MAPK and inducing HO-1 in RAW264.7 macrophages[J].Food & Function,2016,7(6):2773-2779.

    85. [85]

      ANDREUZZI E,FEJZA A,POLANO M,et al.Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway[J].Journal of Experimental & Clinical Cancer Research,2022,41(1):60.

    86. [86]

      AL-RASHED F,SINDHU S,AREFANIAN H,et al.Repetitive intermittent hyperglycemia drives the M1 polarization and inflammatory responses in THP-1 macrophages through the mechanism involving the TLR4-IRF5 pathway[J].Cells,2020,9(8):1892.

    87. [87]

      SCHNEIDER A,WEIER M,HERDERSCHEE J,et al.IRF5 is a key regulator of macrophage response to lipopolysaccharide in newborns[J].Frontiers in Immunology,2018,9:1597.

    88. [88]

      JIMÉNEZ-SOUSA M Á,MEDRANO L M,LIU P,et al.IL-1B rs16944 polymorphism is related to septic shock and death[J].European Journal of Clinical Investigation,2017,47(1):53-62.

    89. [89]

      成雪,高东晓,宋佳佳,等.酪蛋白糖巨肽酶解物抗炎活性评价及其作用机制研究[C]//中国乳业科技大会.第五届中国乳业科技大会论文集汇编.北京:[出版者不详],2014:160.

    90. [90]

      RAO K M.MAP kinase activation in macrophages[J].Journal of Leukocyte Biology,2001,69(1):3-10.

    91. [91]

      CHOO Y W,KANG M,KIM H Y,et al.M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors[J].ACS Nano,2018,12(9):8977-8993.

    92. [92]

      LÜ(LYU) L L,FENG Y,WU M,et al.Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J].Cell Death and Differentiation,2020,27(1):210-226.

    93. [93]

      RAMOS-BENITEZ M J,RUIZ-JIMENEZ C,ROSADO-FRANCO J J,et al.Fh15 blocks the lipopolysaccharide-induced cytokine storm while modulating peritoneal macrophage migration and CD38 expression within spleen macrophages in a mouse model of septic shock[J].Msphere,2018,3(6):e00548-18.

    94. [94]

      ARABPOUR M,SAGHAZADEH A,REZAEI N.Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes[J].International Immunopharmacology,2021,97:107823.

    95. [95]

      SHRIVASTAVA R,SHUKLA N.Attributes of alternatively activated (M2) macrophages[J].Life Science,2019,224:222-231.

Article Metrics

Article views(3381) PDF downloads(65) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return