JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 6
December 2022
Article Contents
WANG Chunyan, SHEN Jinchao, ZHOU Weifeng, et al. Researches on CPM status emitted by coal-fired power plants and its environmental effects[J]. Journal of Light Industry, 2022, 37(6): 101-109. doi: 10.12187/2022.06.013
Citation: WANG Chunyan, SHEN Jinchao, ZHOU Weifeng, et al. Researches on CPM status emitted by coal-fired power plants and its environmental effects[J]. Journal of Light Industry, 2022, 37(6): 101-109. doi: 10.12187/2022.06.013 shu

Researches on CPM status emitted by coal-fired power plants and its environmental effects

  • Received Date: 2021-09-22
    Accepted Date: 2022-06-20
  • According to Method 202 proposed by EPA in 2017 and HJ 836-2017 issued by Environmental Protection Department of China, devices of TPM was designed and utilized with which samples of FPM and CPM could be collected simultaneously. FPM, CPM, water soluble ions and elements analysis of CPM in flue gas emitted by three coal-fired power plants named A, B and C were monitored. CFD was used to simulate the diffusion trajectory of PM2.5 formed by CPM emission from fixed sources in stationary weather. The statistical results showed that mass concentrations of TPM emitted by plant A, B and C was 8.63±3.11 mg/m3, 19.05±8.85 mg/m3 and 5.07±1.59 mg/m3, respectively. It was proved that CPM was 90% of TPM and FPM was low mass concentration. Inorganic CPM was dominant in CPM, SO42-, NH4+, Na+ and other water-soluble ions were important components, and the emission of metal elements especially heavy metal should not be neglected. CFD was used to simulate the diffusion trajectory of PM2.5 formed by CPM emission from fixed sources in stationary weather. It was proved that CPM could accumulate below atmospheric boundary layer under meteorological conditions that were not conductive to the diffusion of pollutants, causing PM2.5 accumulation in a short period of time, which was an important factor in the formation of heavy pollutant weather.
  • 加载中
    1. [1]

      颜岩,余波,王浩,等.燃煤电厂湿烟羽治理技术研究进展[J].过程工程学报,2020,20(7):745-756.

    2. [2]

      国家环境保护总局. 固定污染源排气中颗粒物和气态污染物采样方法:GB/T 16157—1996[S].北京:中国环境科学出版社,1996.

    3. [3]

      国家环境保护总局. 固定污染源废气 低浓度颗粒物的测定 重量法:HJ 836—2017[S].北京:中国环境科学出版社,1996.

    4. [4]

      裴冰.燃煤电厂可凝结颗粒物的测试与排放[J].环境科学,2015,36(5):1544-1549.

    5. [5]

      胡月琪,冯亚军,王琛,等.燃煤锅炉烟气中CPM与水溶性离子监测方法及应用研究[J].环境监测管理与技术,2016,28(1):41-45.

    6. [6]

      石爱军,胡月琪,白志鹏,等.湿法脱硫烟气中多形态颗粒物的测量方法及组分特征[J].中国环境监测,2017,33(2):101-109.

    7. [7]

      CHOI D S,KIM Y M,LEE I H,et al.Study on the contribution ratios of particulate matter emissions in differential provinces concerning condensable particulate matter[J].Energy & Environment,2019,30(7):1206-1218.

    8. [8]

      ZHANG Z P,LI Y Z,ZHANG X Y,et al.Review of hazardous materials in condensable particulate matter[J].Fuel Processing Technology,2021,220:106892.

    9. [9]

      LI X D,ZHOU C Y,LI J W,et al.Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator[J].Environmental Science and Pollution Research,2019,26:12798-12806.

    10. [10]

      盛重义,张斌,杨柳,等.燃煤电厂WFGD系统对可凝结颗粒物转化特性的影响[C]//中国环境科学学会.中国环境科学学会科学技术年会论文集.北京:[出版者不详],2018:1302-1306.

    11. [11]

      杨柳,张斌,王康慧,等.超低排放线路下燃煤烟气可凝结颗粒物在WFGD、WESP中的转化特性[J].环境科学,2019,40(1):121-125.

    12. [12]

      USEPA.Method 202-Dry impinger method for determining condensable particulate emissions from stationary sources(40 CFR Part 51)[R].Washington,D.C.:USEPA,2017.

    13. [13]

      CORIO L A,SHERWELL J.In-stack condensible particulate matter measurements and issues[J].Journal of the Air & Waste Management Association,2000,50(2):207-218.

    14. [14]

      YANG H H,LEE K T,HSIEH Y S,et al.Filterable and condensable fine particulate emissions from stationary sources[J].Aerosol and Air Quality Research,2014,14(7):2010-2016.

    15. [15]

      LI J W,LI X D,LI M,et al.Influence of air pollution control devices on the polycyclic aromatic hydrocarbon distribution in flue gas from an ultralow-emission coal-fired power plant[J].Energy & Fuels,2016,30(11):9572-9579.

    16. [16]

      李俊华,姚群,朱廷钰.工业烟气多污染物深度治理技术及工程应用[M].北京:科学出版社,2019.

    17. [17]

      苏跃进.水蒸气和水溶性离子排放对雾霾暴发的影响分析[J].科学与管理,2019,39(2):55-67.

    18. [18]

      叶兴南,陈建民.灰霾与颗粒物的吸湿增长[J].自然杂志,2013,35(5):337-340.

    19. [19]

      戴树桂,王晓蓉,邓南圣,等.环境化学[M].北京:高等教育出版社,2006.

    20. [20]

      王春艳,申进朝,谭金峰,等.垃圾焚烧发电厂可凝结颗粒物组分特征研究[J].环境污染与防治,2022,44(8):1068-1073.

    21. [21]

      LIU H J,TIAN H Z,ZHANG K,et al.Seasonal variation,formation mechanisms and potential sources of PM2.5 in two typical cities in the Central Plains Urban Agglomeration,China[J].Science of the Total Environment,2019,657:657-670.

    22. [22]

      邓斌,韩长民,赵红等.CFD模拟在湿烟羽控制技术中的应用[J].环保科技,2018,24(5):6-10.

    23. [23]

      陈逸鹏,吴昊,杨爱勇,等.湿法脱硫尾气排放的烟羽扩散数值模拟[J].热能动力工程,2019,34(6):109-115.

Article Metrics

Article views(1424) PDF downloads(9) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return