谷朊抗冻多肽对酵母细胞的低温保护作用
The cryoprotective effect of gluten protease hydrolysates on yeast cells
-
摘要: 以酵母细胞为研究对象,探究不同质量浓度谷朊抗冻多肽对冻藏或反复冻融过程中酵母细胞存活率、细胞形态、细胞膜损伤及细胞内容物泄漏量的影响。结果表明:一定质量浓度(20~40 g/L)的谷朊抗冻多肽可提高冻藏或反复冻融过程中酵母细胞的存活率;反复冻融8次后,添加40 g/L谷朊抗冻多肽的酵母悬浮液中细胞存活率最高,比对照组提高了65.63%;谷朊抗冻多肽可减缓冰晶对酵母细胞的破坏,并使酵母细胞保持相对完整和光滑的表面形态;谷朊抗冻多肽促使冻藏或反复冻融过程中损伤细胞的比例显著降低,并在一定程度上抑制胞内DNA和GSH的泄漏;谷朊抗冻多肽通过减轻冻藏或反复冻融过程中冰晶对细胞膜的不利影响,从而提高酵母细胞的存活率。Abstract: With yeast cell as research objective, the effects of different amounts of gluten antifreeze polypeptides on yeast cell survival rate, cell morphology, cell membrane damage and leakage of cell contents during the freezing or repeated freezing and thawing process were studied. The results showed that a certain mass concentration (20~40 g/L) of gluten antifreeze polypeptides could improve the survival rate of yeast cells during the freezing or repeated freezing and thawing process. After repeated freezing and thawing 8 times, the cell survival rate in the yeast suspension supplemented with 40 g/L gluten antifreeze polypeptide was the highest, which was 65.63% higher than that in the blank group. Gluten antifreeze polypeptide could slow down the destruction of yeast cells by ice crystals and keep yeast cells relatively intact and smooth surface morphology. The gluten antifreeze polypeptides significantly reduced the proportion of damaged cells during the freezing or repeated freezing and thawing process, and inhibited the leakage of intracellular DNA and GSH to a certain extent. Gluten antifreeze polypeptides improved the survival rate of yeast cells by reducing the adverse effects of ice crystals on cell membranes during the freezing or repeated freezing and thawing process.
-
Key words:
- gluten antifreeze polypeptide /
- yeast cell /
- cell survival rate /
- cell content /
- cryoprotective effect
-
-
[1]
WANG F X, CUI M L, LIU H D, et al.Characterization and identification of a fraction from silver carp (Hypophthalmichthys molitrix) muscle hydrolysates with cryoprotective effects on yeast[J].LWT-Food Science and Technology, 2020, 137:110388.
-
[2]
禚悦, 张士凯, 王敏, 等.冷冻面团的研究进展[J].中国粮油学报, 2021, 36(4):177-184.
-
[3]
忻晨.不同结构羧甲基纤维素钠影响冷冻面团品质及其机制探究[D].武汉:华中农业大学, 2018.
-
[4]
郭璐楠.面团冻藏过程中酵母稳定性变化及其对面团品质的影响[D].无锡:江南大学, 2021.
-
[5]
HYUCK L J, KYUNG P A, HACKWON D, et al.Structural basis for antifreeze activity of ice-binding protein from arctic yeast[J].Journal of Biological Chemistry, 2012, 287(14):11460-11468.
-
[6]
洪晶, 汪少芸, 吴金鸿, 等.食品源抗冻多肽的制备及冰晶抑制作用研究[J].中国食品学报, 2013, 13(1):11-18.
-
[7]
WU J H, RONG Y Z, WANG Z W, et al.Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction[J].Food Chemistry, 2015, 174:621-629.
-
[8]
ZHANG Y Y, WANG W T, LIU Y F, et al.Cryoprotective effect of wheat gluten enzymatic hydrolysate on fermentation properties of frozen dough[J]. Journal of Cereal Science, 2022, 104:103423.
-
[9]
ZHANG Y Y, LUO L, LI J, et al.In-situ and real-time monitoring of enzymatic process of wheat gluten by miniature fiber NIR spectrometer[J]. Food Research International, 2017, 99(Pt 1):147-154.
-
[10]
熊思佳, 王发祥, 俞健, 等.鲢鱼酶解产物对酵母菌的抗冻保护作用[J].食品与机械, 2018, 34(2):116-119
, 180. -
[11]
储晓明.扫描电镜及能谱分析在钢铁冶金中的应用探讨[J].冶金与材料, 2022, 14(1):15-16.
-
[12]
LU L, ZHU K X, YANG Z, et al.Metabolomics analysis of freeze-thaw tolerance enhancement mechanism of ε-poly-l-lysine on industrial yeast[J].Food Chemistry, 2022, 382:132315.
-
[13]
LI L, WU J H, ZANG L, et al.Investigation of the physiochemical properties, cryoprotective activity and possible action mechanisms of sericin peptides derived from membrane separation[J].LWT-Food Science and Technology, 2017, 77:532-541.
-
[14]
CHEN X, WU J H, LI L, et al.Cryoprotective activity and action mechanism of antifreeze peptides obtained from tilapia scales on Streptococcus thermophilus during cold stress[J].Journal of Agricultural and Food Chemistry, 2019, 67(7):1918-1926.
-
[15]
翟娅菲, 田佳丽, 石佳佳, 等.短波紫外发光二极管处理对脂环酸芽孢杆菌的灭活效果及作用机制[J].食品科学, 2022, 43(9):71-78.
-
[16]
RIBOTTA P D, LEON A E, ANON M C.Effects of yeast freezing in frozen dough[J].Cereal Chemistry, 2003, 80(4):454-458.
-
[17]
WANG F X, XIONG S J, LI X H, et al.Cryoprotective effect of silver carp muscle hydrolysate on baker's yeast Saccharomyces cerevisiae and its underlying mechanism[J].Food Science & Nutrition, 2020, 8(1):190-198.
-
[18]
CHEN X, LI L, YANG F J, et al.Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage[J].Food and Chemical Toxicology, 2020, 136:111056.
-
[19]
LIU X, WANG K Y, EXTERNBRINK M, et al.Control of secondary structure and morphology of peptide-guanidiniocarbonylpyrrole conjugates by variation of the chain length[J].Chinese Chemical Letters, 2019, 31(5):1239-1242.
-
[20]
DU L H, BETTI M.Chicken collagen hydrolysate cryoprotection of natural actomyosin:Mechanism studies during freeze-thaw cycles and simulated digestion[J].Food Chemistry, 2016, 211:791-802.
-
[21]
CHEN X, WANG S Y.Cryoprotective effect of antifreeze glycopeptide analogues obtained by nonenzymatic glycation on Streptococcus thermophilus and its possible action mechanism[J].Food Chemistry, 2019, 288:239-247.
-
[22]
WANG W L, CHEN M S, WU J H, et al.Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism[J].LWT-Food Science and Technology, 2015, 63(2):878-885.
-
[23]
LIN J Y, GAO X Y, ZHAO J Q, et al.Plant cadmium resistance 2(SaPCR2) facilitates cadmium efflux in the roots of hyperaccumulator Sedum alfredii Hance[J].Frontiers in Plant Science, 2020, 11:568889.
-
[24]
陈旭, 蔡茜茜, 汪少芸, 等.抗冻肽的研究进展及其在食品工业的应用前景[J].食品科学, 2019, 40(17):331-337.
-
[25]
VERHEYEN C, ALBRECHT A, HERRMANN J, et al.The contribution of glutathione to the destabilizing effect of yeast on wheat dough[J].Food Chemistry, 2015, 173:243-249.
-
[26]
GUO L N, FANG F, ZHANG Y, et al.Glutathione affects rheology and water distribution of wheat dough by changing gluten conformation and protein depolymerisation[J].International Journal of Food Science & Technology, 2020, 56(7):3157-3165.
-
[1]
计量
- PDF下载量: 25
- 文章访问数: 4194
- 引证文献数: 0