JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 1
February 2023
Article Contents
ZHANG Yanyan, GUO Penglei, WANG Wentao, et al. The cryoprotective effect of gluten protease hydrolysates on yeast cells[J]. Journal of Light Industry, 2023, 38(1): 10-17,26. doi: 10.12187/2023.01.002
Citation: ZHANG Yanyan, GUO Penglei, WANG Wentao, et al. The cryoprotective effect of gluten protease hydrolysates on yeast cells[J]. Journal of Light Industry, 2023, 38(1): 10-17,26. doi: 10.12187/2023.01.002 shu

The cryoprotective effect of gluten protease hydrolysates on yeast cells

  • Received Date: 2022-05-08
  • With yeast cell as research objective, the effects of different amounts of gluten antifreeze polypeptides on yeast cell survival rate, cell morphology, cell membrane damage and leakage of cell contents during the freezing or repeated freezing and thawing process were studied. The results showed that a certain mass concentration (20~40 g/L) of gluten antifreeze polypeptides could improve the survival rate of yeast cells during the freezing or repeated freezing and thawing process. After repeated freezing and thawing 8 times, the cell survival rate in the yeast suspension supplemented with 40 g/L gluten antifreeze polypeptide was the highest, which was 65.63% higher than that in the blank group. Gluten antifreeze polypeptide could slow down the destruction of yeast cells by ice crystals and keep yeast cells relatively intact and smooth surface morphology. The gluten antifreeze polypeptides significantly reduced the proportion of damaged cells during the freezing or repeated freezing and thawing process, and inhibited the leakage of intracellular DNA and GSH to a certain extent. Gluten antifreeze polypeptides improved the survival rate of yeast cells by reducing the adverse effects of ice crystals on cell membranes during the freezing or repeated freezing and thawing process.
  • 加载中
    1. [1]

      WANG F X, CUI M L, LIU H D, et al.Characterization and identification of a fraction from silver carp (Hypophthalmichthys molitrix) muscle hydrolysates with cryoprotective effects on yeast[J].LWT-Food Science and Technology, 2020, 137:110388.

    2. [2]

      禚悦, 张士凯, 王敏, 等.冷冻面团的研究进展[J].中国粮油学报, 2021, 36(4):177-184.

    3. [3]

      忻晨.不同结构羧甲基纤维素钠影响冷冻面团品质及其机制探究[D].武汉:华中农业大学, 2018.

    4. [4]

      郭璐楠.面团冻藏过程中酵母稳定性变化及其对面团品质的影响[D].无锡:江南大学, 2021.

    5. [5]

      HYUCK L J, KYUNG P A, HACKWON D, et al.Structural basis for antifreeze activity of ice-binding protein from arctic yeast[J].Journal of Biological Chemistry, 2012, 287(14):11460-11468.

    6. [6]

      洪晶, 汪少芸, 吴金鸿, 等.食品源抗冻多肽的制备及冰晶抑制作用研究[J].中国食品学报, 2013, 13(1):11-18.

    7. [7]

      WU J H, RONG Y Z, WANG Z W, et al.Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction[J].Food Chemistry, 2015, 174:621-629.

    8. [8]

      ZHANG Y Y, WANG W T, LIU Y F, et al.Cryoprotective effect of wheat gluten enzymatic hydrolysate on fermentation properties of frozen dough[J]. Journal of Cereal Science, 2022, 104:103423.

    9. [9]

      ZHANG Y Y, LUO L, LI J, et al.In-situ and real-time monitoring of enzymatic process of wheat gluten by miniature fiber NIR spectrometer[J]. Food Research International, 2017, 99(Pt 1):147-154.

    10. [10]

      熊思佳, 王发祥, 俞健, 等.鲢鱼酶解产物对酵母菌的抗冻保护作用[J].食品与机械, 2018, 34(2):116-119
      , 180.

    11. [11]

      储晓明.扫描电镜及能谱分析在钢铁冶金中的应用探讨[J].冶金与材料, 2022, 14(1):15-16.

    12. [12]

      LU L, ZHU K X, YANG Z, et al.Metabolomics analysis of freeze-thaw tolerance enhancement mechanism of ε-poly-l-lysine on industrial yeast[J].Food Chemistry, 2022, 382:132315.

    13. [13]

      LI L, WU J H, ZANG L, et al.Investigation of the physiochemical properties, cryoprotective activity and possible action mechanisms of sericin peptides derived from membrane separation[J].LWT-Food Science and Technology, 2017, 77:532-541.

    14. [14]

      CHEN X, WU J H, LI L, et al.Cryoprotective activity and action mechanism of antifreeze peptides obtained from tilapia scales on Streptococcus thermophilus during cold stress[J].Journal of Agricultural and Food Chemistry, 2019, 67(7):1918-1926.

    15. [15]

      翟娅菲, 田佳丽, 石佳佳, 等.短波紫外发光二极管处理对脂环酸芽孢杆菌的灭活效果及作用机制[J].食品科学, 2022, 43(9):71-78.

    16. [16]

      RIBOTTA P D, LEON A E, ANON M C.Effects of yeast freezing in frozen dough[J].Cereal Chemistry, 2003, 80(4):454-458.

    17. [17]

      WANG F X, XIONG S J, LI X H, et al.Cryoprotective effect of silver carp muscle hydrolysate on baker's yeast Saccharomyces cerevisiae and its underlying mechanism[J].Food Science & Nutrition, 2020, 8(1):190-198.

    18. [18]

      CHEN X, LI L, YANG F J, et al.Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage[J].Food and Chemical Toxicology, 2020, 136:111056.

    19. [19]

      LIU X, WANG K Y, EXTERNBRINK M, et al.Control of secondary structure and morphology of peptide-guanidiniocarbonylpyrrole conjugates by variation of the chain length[J].Chinese Chemical Letters, 2019, 31(5):1239-1242.

    20. [20]

      DU L H, BETTI M.Chicken collagen hydrolysate cryoprotection of natural actomyosin:Mechanism studies during freeze-thaw cycles and simulated digestion[J].Food Chemistry, 2016, 211:791-802.

    21. [21]

      CHEN X, WANG S Y.Cryoprotective effect of antifreeze glycopeptide analogues obtained by nonenzymatic glycation on Streptococcus thermophilus and its possible action mechanism[J].Food Chemistry, 2019, 288:239-247.

    22. [22]

      WANG W L, CHEN M S, WU J H, et al.Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism[J].LWT-Food Science and Technology, 2015, 63(2):878-885.

    23. [23]

      LIN J Y, GAO X Y, ZHAO J Q, et al.Plant cadmium resistance 2(SaPCR2) facilitates cadmium efflux in the roots of hyperaccumulator Sedum alfredii Hance[J].Frontiers in Plant Science, 2020, 11:568889.

    24. [24]

      陈旭, 蔡茜茜, 汪少芸, 等.抗冻肽的研究进展及其在食品工业的应用前景[J].食品科学, 2019, 40(17):331-337.

    25. [25]

      VERHEYEN C, ALBRECHT A, HERRMANN J, et al.The contribution of glutathione to the destabilizing effect of yeast on wheat dough[J].Food Chemistry, 2015, 173:243-249.

    26. [26]

      GUO L N, FANG F, ZHANG Y, et al.Glutathione affects rheology and water distribution of wheat dough by changing gluten conformation and protein depolymerisation[J].International Journal of Food Science & Technology, 2020, 56(7):3157-3165.

Article Metrics

Article views(4149) PDF downloads(25) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return