JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

雪茄烟叶发酵过程中微生物群落及功能微生物分析

贾云 胡婉蓉 吕晋雄 张倩颖 王跃 罗诚 刘元法 李东亮

贾云, 胡婉蓉, 吕晋雄, 等. 雪茄烟叶发酵过程中微生物群落及功能微生物分析[J]. 轻工学报, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009
引用本文: 贾云, 胡婉蓉, 吕晋雄, 等. 雪茄烟叶发酵过程中微生物群落及功能微生物分析[J]. 轻工学报, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009
JIA Yun, HU Wanrong, LYU Jinxiong, et al. Analysis of microbial communities and functional microbes during fermentation of cigar tobacco leaves[J]. Journal of Light Industry, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009
Citation: JIA Yun, HU Wanrong, LYU Jinxiong, et al. Analysis of microbial communities and functional microbes during fermentation of cigar tobacco leaves[J]. Journal of Light Industry, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009

雪茄烟叶发酵过程中微生物群落及功能微生物分析

    作者简介: 贾云(1994—),女,山西省忻州市人,四川中烟工业有限责任公司博士后,主要研究方向为生物发酵。E-mail:1411472379@qq.com;
  • 基金项目: 中国烟草总公司重大专项项目(110202001040(XJ-02))

  • 中图分类号: TS44+4

Analysis of microbial communities and functional microbes during fermentation of cigar tobacco leaves

  • Received Date: 2022-10-18

    CLC number: TS44+4

  • 摘要: 采用高通量测序和代谢组学对雪茄烟叶发酵过程中理化代谢物质和微生物群落结构进行分析,通过相关性分析和网络分析确定功能微生物及其共生类群,以明确微生物群对雪茄烟叶品质的影响。结果表明:优势微生物属Staphylococcus和Aspergillus的相对丰度在发酵过程中均呈先上升后下降的趋势,并在第21 d分别占据细菌和真菌群落的主导地位;Aspergillus、Staphylococcus、Filobasidium可能对总糖变化和还原糖的生成具有直接或间接作用,Bacillus对含氮物质具有一定的降解作用;Candida作为微生物共生类群和发酵后期的标志微生物属,不仅可以降解含氮物质、合成风味物质,而且对维持微生物群落结构的稳定具有重要作用。
    1. [1]

      FRANKENBURG W G.Chemical changes in the harvested tobacco leaf:Part Ⅱ. Chemical and enzymic conversionsduring fermentation and aging[J].Advances in Enzymology and Related Areas of Molecular Biology,1950, 10:325-441.

    2. [2]

      ZHENG T F, ZHANG Q Y, LI P H, et al.Analysis of microbial community, volatile flavor compounds, and flavor of cigar tobacco leaves from different regions[J].Frontiers in Microbiology, 2022, 13:907270.

    3. [3]

      DI GIACOMO M, PAOLINO M, SILVESTRO D, et al.Microbial community structure and dynamics of dark fire-cured tobacco fermentation[J].Applied and Environmental Microbiology, 2007, 73(3):825-837.

    4. [4]

      LIU F, WU Z Y, ZHANG X P, et al.Microbial community and metabolic function analysis of cigar tobacco leaves during fermentation[J].Microbiologyopen, 2021, 10(2):e1171.

    5. [5]

      ZHANG L, WANG X Y, GUO J H, et al.Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS[J].Journal of Agricultural and Food Chemistry, 2013, 61(11):2597-2605.

    6. [6]

      LI J J, ZHAO Y Y, QIN Y Q, et al.Influence of microbiota and metabolites on the quality of tobacco during fermentation[J].BMC Microbiology, 2020, 20(1):356.

    7. [7]

      RIVETT D W, BELL T.Abundance determines the functional role of bacterial phylotypes in complex communities[J].Nature Microbiology, 2018, 3(7):767-772.

    8. [8]

      VILANOVA C, PORCAR M.Are multi-omics enough?[J].Nature Microbiology, 2016, 1(8):16101.

    9. [9]

      HALL E K, BERNHARDT E S, BIER R L, et al.Understanding how microbiomes influence the systems they inhabit[J].Nature Microbiology, 2018, 3(9):977-982.

    10. [10]

      WOLFE B E, BUTTON J E, SANTARELLI M, et al.Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity[J].Cell, 2014, 158(2):422-433.

    11. [11]

      WANG S L, WU Q, NIE Y, et al.Construction of synthetic microbiota for reproducible flavor compound metabolism inChinese light-aroma-type liquor produced by solid-state fermentation[J].Applied and Environmental Microbiology,2019, 85(10):e03090-18.

    12. [12]

      HUANG T, LU Z M, PENG M Y, et al.Combined effects of fermentation starters and environmental factors on the microbial community assembly and flavor formation of Zhenjiang aromatic vinegar[J].Food Research International, 2022, 152:110900.

    13. [13]

      JIA Y, NIU C T, ZHENG F Y, et al. Development of a defined autochthonous starter through dissecting the seasonal microbiome of broad bean paste[J].Food Chemistry, 2021, 357:129625.

    14. [14]

      SEGATA N, IZARD J, WALDRON L, et al.Metagenomicbiomarker discovery and explanation[J].Genome Biology, 2011, 12:R60.

    15. [15]

      RIVERA A J, TYX R E.Microbiology of the American smokeless tobacco[J].Applied Microbiology and Biotechnology, 2021, 105(12):4843-4853.

    16. [16]

      ARIHARA K, ZHOU L, OHATA M.Bioactive properties of Maillard reaction products generated from food protein-derived peptides[J].Advances in Food and Nutrition Research, 2017, 81:161-185.

    17. [17]

      KAMINSKI K P, BOVET L, LAPARRA H, et al.Alkaloid chemophenetics and transcriptomics of the Nicotiana genus[J].Phytochemistry, 2020, 177:112424.

    18. [18]

      VIGLIOTTA G, DI GIACOMO M, CARATA E, et al.Nitrite metabolism in Debaryomyces hansenii TOB-Y7, a yeast strain involved in tobacco fermentation[J].Applied Microbiology and Biotechnology, 2007, 75(3):633-645.

    19. [19]

      LIU J L, MA G H, CHEN T, et al.Nicotine-degrading microorganisms and their potential applications[J].Applied Microbiology and Biotechnology, 2015, 99(9):3775-3785.

    20. [20]

      BANOZIC M, ALADIC K, JERKOVIC I, et al.Volatile organic compounds of tobacco leaves versus waste (scrap, dust, and midrib):Extraction and optimization[J].Journal of the Science of Food and Agriculture, 2021, 101(5):1822-1832.

    21. [21]

      ZHANG H F, YANG J, ZHU F P, et al.Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) for the characterization of cigar leaves[J].LC GC North America, 2021, 39(8):2-7.

    22. [22]

      ZHU J C, ZHU Y, WANG K, et al.Characterization of key aroma compounds and enantiomer distribution in Longjing tea[J].Food Chemistry, 2021, 361:130096.

    23. [23]

      KONEM K, GUEHI S T, DURAND N, et al.Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation[J].Food Research International, 2016, 89:910-917.

    24. [24]

      ZHENG T F, ZHANG Q Y, WU Q, et al.Effects of inoculation with Acinetobacter on fermentation of cigar tobacco leaves[J].Frontiers in Microbiology, 2022, 13:911791.

    25. [25]

      CHAO A, BUNGE J.Estimating the number of species in a stochastic abundance model[J].Biometrics, 2002, 58(3):531-539.

    26. [26]

      JIA Y, NIU C T, LU Z M, et al.A bottom-up approach to develop simplified microbial community model with desired functions:Application for efficient fermentation of broad bean paste with low salinity[J].Applied and Environmental Microbiology, 2020, 86(12):e00306-20.

    27. [27]

      MOT R D, VERACHTERT H.Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum[J].Applied and Environmental Microbiology, 1985, 50(6):1474-1482.

    28. [28]

      LAKSHMI H P, PRASAD U V, YESWANTH S, et al.Molecular characterization of α-amylase from Staphylococcus aureus[J].Biomedical Informatics, 2013, 9(6):281-285.

    29. [29]

      DE ARAUJO VIANA D, DE ALBUQUERQUE LIMA C, NEVES R P, et al.Production and stability of protease from Candida buinensis[J].Applied Biochemistry and Biotechnology, 2010, 162(3):830-842.

    30. [30]

      RUAN L C, MENG M, WANG C, et al.Draft genome sequence of Candida versatilis and osmotolerance analysis in soy sauce fermentation[J].Journal of the Science of Food and Agriculture, 2019, 99(6):3168-3175.

    31. [31]

      LU Y H, YANG L Z, YANG G H, et al.Bio-augmented effect of Bacillus amyloliquefaciens and Candida versatilis on microbial community and flavor metabolites during Chinese horse bean-chili-paste fermentation[J].International Journal of Food Microbiology, 2021, 351:109262.

    32. [32]

      BRESSANI A P P, MARTINEZ S J, BATISTA N N, et al.Co-inoculation of yeasts starters:A strategy to improve quality of low altitude Arabica coffee[J].Food Chemistry, 2021, 361:130133.

    33. [33]

      JIANG X W, PENG D, ZHANG W, et al.Effect of aroma-producing yeasts in high-salt liquid-state fermentation soy sauce and the biosynthesis pathways of the dominant esters[J].Food Chemistry, 2021, 344:128681.

    34. [34]

      BANERJEE S, SCHLAEPPI K, HEIJDEN M G A V D.Keystone taxa as drivers of microbiome structure and functioning[J].Nature Reviews Microbiology, 2018, 16(9):567-576.

    35. [35]

      WIDDER S, ALLEN R J, PFEIFFER T, et al.Challenges in microbial ecology:Building predictive understanding of community function and dynamics[J].The ISME Journal, 2016, 10(11):2557-2568.

    36. [36]

      SIEBER J R, MCINERNEY M J, GUNSALUS R P.Genomic insights into syntrophy:The paradigm for anaerobic metabolic cooperation[J].Annual Review of Microbiology, 2012, 66:429-452.

    37. [37]

      LI Q, CHAI S, LI Y D, et al.Biochemical components associated with microbial community shift during the pile-fermentation of primary dark tea[J].Frontiers in Microbiology, 2018, 9:1509.

    1. [1]

      杨靖刘广昊王琼波韩丽王清福赵志伟李蕾王秋领 . 微生物发酵开发杏果渣香料的研究. 轻工学报, 2024, 0(0): -.

    2. [2]

      章存勇庄海锋时雅琪邹鹏丁乃红纵坤贾良元郭东锋 . 国内外雪茄烟叶热解产物差异性研究. 轻工学报, 2024, 0(0): -.

    3. [3]

      章存勇庄海锋时雅琪邹鹏丁乃红纵坤贾良元郭东锋 . 国内外雪茄烟叶热解产物差异性研究. 轻工学报, 2024, 39(5): 118-126. doi: 10.12187/2024.05.014

    4. [4]

      李浩佳贺诗华曹艺泽郭西玉朱由余赵玮钦黄淳 . 以碳量子点为荧光信号的生物传感器构建及其在金银花 Pb2+ 检测中的应用. 轻工学报, 2024, 0(0): -.

    5. [5]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    6. [6]

      张建栋杨忠泮吴恋恋徐大勇朱萍张雯晶堵劲松 . 基于高光谱成像及机器学习的烟叶糖料液施加量判别模型. 轻工学报, 2024, 39(5): 86-94. doi: 10.12187/2024.05.010

    7. [7]

      吴晓东刘畅李俊胡良志贺凌晨袁海霞李强黄锦标 . 基于高光谱检测的烟丝加香均匀性表征方法. 轻工学报, 2024, 39(5): 95-101. doi: 10.12187/2024.05.011

    8. [8]

      刘广超邓莎高峄涵吴涛邓锐杰 . 加热卷烟辊压法薄片丝吸湿性影响因素研究. 轻工学报, 2024, 39(5): 109-117. doi: 10.12187/2024.05.013

    9. [9]

      李艳坤张伟刘彦伶 . 数据融合策略在食用油真实性鉴别中的研究与应用进展. 轻工学报, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006

  • 加载中
计量
  • PDF下载量:  58
  • 文章访问数:  5278
  • 引证文献数: 0
文章相关
  • 收稿日期:  2022-10-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
贾云, 胡婉蓉, 吕晋雄, 等. 雪茄烟叶发酵过程中微生物群落及功能微生物分析[J]. 轻工学报, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009
引用本文: 贾云, 胡婉蓉, 吕晋雄, 等. 雪茄烟叶发酵过程中微生物群落及功能微生物分析[J]. 轻工学报, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009
JIA Yun, HU Wanrong, LYU Jinxiong, et al. Analysis of microbial communities and functional microbes during fermentation of cigar tobacco leaves[J]. Journal of Light Industry, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009
Citation: JIA Yun, HU Wanrong, LYU Jinxiong, et al. Analysis of microbial communities and functional microbes during fermentation of cigar tobacco leaves[J]. Journal of Light Industry, 2023, 38(1): 71-78,89. doi: 10.12187/2023.01.009

雪茄烟叶发酵过程中微生物群落及功能微生物分析

    作者简介:贾云(1994—),女,山西省忻州市人,四川中烟工业有限责任公司博士后,主要研究方向为生物发酵。E-mail:1411472379@qq.com
  • 1. 江南大学 食品学院, 江苏 无锡 024000;
  • 2. 四川中烟工业有限责任公司 雪茄烟技术创新中心, 四川 成都 610101
基金项目:  中国烟草总公司重大专项项目(110202001040(XJ-02))

摘要: 采用高通量测序和代谢组学对雪茄烟叶发酵过程中理化代谢物质和微生物群落结构进行分析,通过相关性分析和网络分析确定功能微生物及其共生类群,以明确微生物群对雪茄烟叶品质的影响。结果表明:优势微生物属Staphylococcus和Aspergillus的相对丰度在发酵过程中均呈先上升后下降的趋势,并在第21 d分别占据细菌和真菌群落的主导地位;Aspergillus、Staphylococcus、Filobasidium可能对总糖变化和还原糖的生成具有直接或间接作用,Bacillus对含氮物质具有一定的降解作用;Candida作为微生物共生类群和发酵后期的标志微生物属,不仅可以降解含氮物质、合成风味物质,而且对维持微生物群落结构的稳定具有重要作用。

English Abstract

参考文献 (37) 相关文章 (9)

目录

/

返回文章