JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 1
February 2023
Article Contents
WANG Wenting, SONG Kai, YANG Chen, et al. Macrogenomics-based investigation of the mechanism underlying tobacco fermentation by Enterobacter hormaechei[J]. Journal of Light Industry, 2023, 38(1): 79-89. doi: 10.12187/2023.01.010
Citation: WANG Wenting, SONG Kai, YANG Chen, et al. Macrogenomics-based investigation of the mechanism underlying tobacco fermentation by Enterobacter hormaechei[J]. Journal of Light Industry, 2023, 38(1): 79-89. doi: 10.12187/2023.01.010 shu

Macrogenomics-based investigation of the mechanism underlying tobacco fermentation by Enterobacter hormaechei

  • Received Date: 2022-10-12
  • The dynamic changes of surface microorganisms were monitored during the fermentation of tobacco by Enterobacter hormaechei F8-1, and mechanism of tobacco fermentation by F8-1 was studied combined with neutral aroma components of tobacco leaves and sensory analysis. The results showed that after fermentation the aroma quality and sweet taste were improved, the offensive odor and irritation were reduced. The contents of megastigmatrienone, solanone, (E)-β-damascenone and dihydrodamascenone were increased respectively by 37.40%, 59.87%, 53.02% and 46.61%. During the fermentation, the predominant species were E hormaechei F8-1, Pseudomonas aeruginosa, and Enterobacter cloacae; the highest number of glycoside hydrolases accounted for 78.3% of the microbial carbohydrate-active enzymes on the surface of the tobacco filaments during fermentation; the abundance of Enterobacter spp. was positively correlated with the content of solanone, megastigmatrienone, (E)-β-damascenone and dihydrodamascenone, and the abundance of glycoside hydrolase family 1 (GH1) was positively correlated with the content of solanone, megastigmatrienon and farnesylacetone. Glycoside hydrolases in the GH1 might be key factors for sensory enhancement after tobacco fermentation.
  • 加载中
    1. [1]

      毛多斌, 黄晓玉, 周利峰, 等.枯草芽孢杆菌分离鉴定及其对烟叶化学成分和吸味品质的影响[J].烟草科技, 2022, 55(8):10-19.

    2. [2]

      于少藤, 毛淑蕊, 胡安妥, 等.改善烟叶品质微生物的筛选及其作用效果研究[J].南京农业大学学报, 2021, 44(4):766-777.

    3. [3]

      曾婉俐, 许力, 蒋佳芮, 等.产香细菌的筛选及产香特性分析[J].基因组学与应用生物学, 2020, 39(2):636-643.

    4. [4]

      张耀广, 杨宗灿, 刘向真, 等.陈化烟叶中1株果胶酶高产菌的分离、筛选与鉴定[J].河南农业科学, 2017, 46(2):143-147.

    5. [5]

      帅瑶, 陶菡, 田运霞, 等.复合菌种发酵烟叶产酶及挥发性风味物质变化[J].河南农业科学, 2020, 49(10):162-175.

    6. [6]

      龙章德, 苏赞, 李季刚, 等.一种改善广西百色地区烟叶品质的混合微生物发酵技术[J].轻工学报, 2021, 36(5):59-66.

    7. [7]

      尚碧娇, 左志晗, 李文悦, 等.Biolog-ECO方法探究饲喂益生菌对凡纳滨对虾肠道微生物代谢及有效作用时间的影响[J].水产学报, 2019, 43(4):1162-1170.

    8. [8]

      杨雪鹏, 汪芳芳, 崔君竹, 等.霍氏肠杆菌A20降解类胡萝卜素的条件优化[J].中国酿造, 2016, 35(9):125-128.

    9. [9]

      龙章德, 王敏, 薛云, 等.烟叶中β-胡萝卜素高效降解菌株的筛选鉴定及发酵条件优化[J].轻工学报, 2022, 37(4):86-93.

    10. [10]

      王艳萍, 方海田, 胡海明, 等.人肠道来源霍氏肠杆菌4-2-1的分离及其对枸杞多糖的发酵作用[J].食品工业科技, 2022, 43(20):182-188.

    11. [11]

      王瑞新.烟草化学[M].北京:中国农业出版社, 2003.

    12. [12]

      PHEWPAN A, PHUWAPRISIRISAN P, TAKAHASHI H, et al.Microbial diversity during processing of Thai traditional fermented shrimp paste, determined by next generation sequencing[J].LWT-Food Science & Technology, 2020, 122:108989.

    13. [13]

      OHSHIMA C, TAKAHASHI H, INSANG S, et al.Next-generation sequencing reveals predominant bacterial communities during fermentation of Thai fish sauce in large manufacturing plants[J].LWT Food Science & Technology, 2019, 114:108375.

    14. [14]

      XIE G F, WANG L, GAO Q K, et al.Microbial community structure in fermentation process of Shaoxing rice wine by Illumina-based metagenomic sequencing[J].Journal of the Science of Food and Agriculture, 2013, 93(12):3121-3125.

    15. [15]

      CARDINALI G, CORTE L, ROBERT V.Next generation sequencing:Problems and opportunities for next generation studies of microbial communities in food and food industry[J].Current Opinion in Food Science, 2017, 17:62-67.

    16. [16]

      EKICI H, KADIROGLU P, ILGAZ C.Next-generation sequencing of shalgam flavor influencing microflora[J].Journal of Food Processing and Preservation, 2022, 46(6):e15982.

    17. [17]

      HUSSAIN B, CHEN J S, HSU B M, et al.Deciphering bacterial community structure, functional prediction and food safety assessment in fermented fruits using next-generation 16S rRNA amplicon sequencing[J].Microorganisms, 2021, 9(8):1574.

    18. [18]

      LIU S P, CHEN Q L, ZOU H J, et al.A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes[J].International Journal of Food Microbiology, 2019, 303:9-18.

    19. [19]

      ALMEIDA O G G, DE MARTINIS E C P.Metagenome-assembled genomes contribute to unraveling of the microbiome of cocoa fermentation[J].Applied and Environmental Microbiology, 2021, 87(16):e00584.

    20. [20]

      LI Z Y, FENG C X, LUO X G, et al.Revealing the influence of microbiota on the quality of pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis[J].Food Microbiology, 2018, 76:405-415.

    21. [21]

      苏加坤, 徐达, 郭磊, 等.基于宏基因组测序的烟叶表面微生物多样性分析[J].基因组学与应用生物学, 2017, 36(4):1538-1545.

    22. [22]

      龚俊.烤后片烟储存过程中微生物多样性及变化动态[D].上海:华东师范大学, 2015.

    23. [23]

      ZHOU J X, YU L F, ZHANG J, et al.Characterization of the core microbiome in tobacco leaves during aging[J].Microbiologyopen, 2020, 9(3):e984.

    24. [24]

      国家烟草专卖局.卷烟中式卷烟风格感官评价方法:YC/T 497-2014[S].北京:中国标准出版社, 2014.

    25. [25]

      闫巧娟, 刘瑜, 江正强.微生物α-半乳糖苷酶的研究进展[J].微生物学杂志, 2017, 37(3):1-9.

    26. [26]

      ILMBERGER N, STREIT W R.Screening for cellulase-encoding clones in metagenomic libraries[M]//STREIT W, DANIEL R.Metagenomics:Methods in Molecular Biology.New York:Humana Press, 2017:205-217.

    27. [27]

      HENRISSAT B, CLAEYSSENS M, TOMME P, et al.Cellulase families revealed by hydrophobic cluster analysis[J].Gene, 1989, 81(1):83-95.

    28. [28]

      张小敏, 陈飞云, 张学成, 等.糖苷水解酶GH97家族成员PspAG97A的催化机制分析[J].生物学杂志, 2020, 37(2):24-28.

    29. [29]

      SEPTININGRUM K, OHI H, WAEONUKUL R, et al.The GH67α-glucuronidase of Paenibacillus Curdlanolyticus B-6 removes hexenuronic acid groups and facilitates biodegradation of the model xylooligosaccharide hexenuronosyl xylotriose[J].Enzyme & Microbial Technology, 2015, 71:28-35.

    30. [30]

      王艳君, 刘同军, 曹涛, 等.α-L-鼠李糖苷酶的研究进展[J].中国酿造, 2010, 29(10):11-15.

    31. [31]

      NORONHA D M, MOREIRA S, SALMAZO V P, et al.Structural basis of exo-β-mannanase activity in the GH2 family[J].Journal of Biological Chemistry, 2018, 293(35):13636-13649.

    32. [32]

      WU Y Y, MAO G T, FAN H Y, et al.Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 From a thermophilic eubacterium Thermosipho Africanus TCF52B with cellobiose phosphorylase activity[J].Scientific Reports, 2017, 7(1):4849.

    33. [33]

      XIE J C, XU H, JIANG J C, et al.Characterization of a novel thermostable glucose-tolerant GH1β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total epimedium flavonoids[J].Bioorganic Chemistry, 2020, 104:104296.

    34. [34]

      高小晓.利用蛋白质组学技术寻找降解纤维素过程中的相关蛋白[D].大连:大连工业大学, 2020.

    35. [35]

      江海旻.理性设计提高淀粉分支酶催化能力及其在麦芽糊精改性中的应用[D].无锡:江南大学, 2021.

    36. [36]

      王天琪.副干酪乳杆菌L1基因组学测序及对淀粉有代谢作用功能基因的研究[D].锦州:锦州医科大学, 2021.

    37. [37]

      李英波, 宛晓春, 张正竹.烟草糖苷类香气前体研究进展[J].烟草科技, 2006(3):41-43.

Article Metrics

Article views(7265) PDF downloads(22) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return