国家药品监督管理局.国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年第50号)[EB/OL].(2021-04-08
)[2022-08-28].https://www.nmpa.gov.cn/xxgk/ggtg/qtggtg/20210409160321110.html.
王敏, 张晓娜, 徐鹤然, 等.《化妆品监督管理条例》对化妆品原料行业发展的影响[J].轻工学报, 2021, 36(5):92-101.
MACARRON R, BANKS M N, BOJANIC D, et al.Impact of high-throughput screening in biomedical research[J].Nature Reviews Drug Discovery, 2011, 10(3):188-195.
刘艾林, 杜冠华.虚拟筛选辅助新药发现的研究进展[J].药学学报, 2009, 44(6):566-570.
SOUSA S F, CERQUEIRA N M, FERNANDES P A, et al.Virtual screening in drug design and development[J].Combinations of Quantitative and High Throughput Screening, 2010, 13(5):442-453.
ACHARY P G R.Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design:A review[J].Mini Reviews in Medicinal Chemistry, 2020, 20(14):1375-1388.
TROPSHA A, GOLBRAIKH A.Predictive QSAR modeling workflow, model applicability domains, and virtual screening[J].Current Pharmaceutical Design, 2007, 13(34):3494-3504.
SCIOR T, MEDINA F J L, DO Q T, et al.How to recognize and workaround pitfalls in QSAR studies:A critical review[J].Current Medicinal Chemistry, 2009, 16(32):4297-4313.
MURATOV E N, BAJORATH J, SHERIDAN R P, et al.QSAR without borders[J].Chemical Society Reviews, 2020, 49(11):3525-3564.
DRWAL M N, GRIFFITH R.Combination of ligand-and structure-based methods in virtual screening[J].Drug Discovery Today(Technologies), 2013, 10(3):e395-e401.
KUTLUSHINA A, KHAKIMOVA A, MADZHIDOV T, et al.Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures[J].Molecules, 2018, 23(12):3094.
YAN X, LIAO C Z, LIU Z H, et al.Chemical structure similarity search for ligand-based virtual screening:Methods and computational resources[J].Current Drug Targets, 2016, 17(14):1580-1585.
CERETO-MASSAGUé A, OJEDA M J, VALLS C, et al.Molecular fingerprint similarity search in virtual screening[J].A Companion to Methods in Enzymology, 2015, 71:58-63.
HERNáNDEZ-SANTOYO A, TENORIO-BARAJAS A Y, ALTUZAR V, et al.Protein-protein and protein-ligand docking[M]//OGAWA T. Protein Engineering-Techno-logy and Application. Croatia:InTech, 2013:63-81.
ISSA N T, BADIAVAS E V, SCHüRER S.Research techniques made simple:Molecular docking in dermatology-a foray into in silico drug discovery[J].Journal of Investigative Dermatology, 2019, 139(12):2400-2408.
CERQUEIRA N M, GESTO D, OLIVEIRA E F, et al.Receptor-based virtual screening protocol for drug discovery[J].Arch Biochem Biophys, 2015, 582:56-67.
SETHI A, JOSHI K, SASIKALA K, et al.Molecular docking in modern drug discovery:Principles and recent applications[M]//GAITONDE V.Drug Discovery and Development-New Advances.London:IntechOpen, 2019:27-39.
SANDERS M P, MCGUIRE R, ROUMEN L, et al.From the protein's perspective:The benefits and challenges of protein structure-based pharmacophore modeling[J].MedChemComm, 2012, 3(1):28-38.
VÁZQUEZ J, LÓPEZ M, GIBERT E, et al.Merging ligand-based and structure-based methods in drug discovery:An overview of combined virtual screening approaches[J].Molecules, 2020, 25(20):4723.
ZHANG L, TAN J J, HAN D, et al.From machine learning to deep learning:Progress in machine intelligence for rational drug discovery[J].Drug Discovery Today, 2017, 22(11):1680-1685.
徐优俊, 裴剑锋.深度学习在化学信息学中的应用[J].大数据, 2017, 3(2):45-66.
GHASEMI F, MEHRIDEHNAVI A, PéREZ-GARRIDO A, et al.Neural network and deep-learning algorithms used in QSAR studies:merits and drawbacks[J].Drug Discovery Today, 2018, 23(10):1784-1790.
CRAMPON K, GIORKALLOS A, DELDOSSI M, et al.Machine-learning methods for ligand-protein molecular docking[J].Drug Discovery Today, 2022, 27(1):151-164.
DHASMANA A, RAZA S, JAHAN R, et al.Chapter 19 High-throughput virtual screening (htvs) of natural compounds and exploration of their biomolecular mechanisms:an in silico approach[M]//KHAN M S A, AHMAD I, CHATTOPADHYAY D. New Look to Phytomedicine.[S.L.]:Elsevier, 2019:523-548.
SELVARAJ C, CHANDRA I, SINGH S K.Artificial intelligence and machine learning approaches for drug design:challenges and opportunities for the pharmaceutical industries[J].Molecular Diversity, 2022, 26(3):1893-1913.
SABE V T, NTOMBELA T, JHAMBA L A, et al.Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques:A review[J].Eur J Med Chem, 2021, 224:113705.
冯法晴, 刘有停, 董银卯.化妆品美白剂作用机制研究进展[J].香料香精化妆品, 2019(6):71-77.
AI N, WELSH W J, SANTHANAM U, et al.Novel virtual screening approach for the discovery of human tyrosinase inhibitors[J].Plos One, 2014, 9(11):e112788.
KIM B, LEE J Y, LEE H Y, et al.Hesperidin suppresses melanosome transport by blocking the interaction of Rab27A-melanophilin[J].Biomolecules & Therapeutics, 2013, 21(5):343-348.
JOUNG J Y, LEE H Y, PARK J, et al.Identification of novel rab27a/melanophilin blockers by pharmacophore-based virtual screening[J].Applied Biochemistry and Biotechnology, 2014, 172(4):1882-1897.
DESSINIOTI C, KATSAMBAS A D.The role of propionibacterium acnes in acne pathogenesis:facts and controversies[J].Clinics in Dermatology, 2010, 28(1):2-7.
GHOSH S, SINHA M, BHATTACHARYYA A, et al.A rationally designed multifunctional antibiotic for the treatment of drug-resistant acne[J].Journal of Investigative Dermatology, 2018, 138(6):1400-1408.
KIM J.Review of the innate immune response in acne vulgaris:activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses[J].Dermatology, 2005, 211(3):193-198.
GRABOWSKI M, MURGUEITIO M S, BERMUDEZ M, et al.Identification of a pyrogallol derivative as a potent and selective human TLR2 antagonist by structure-based virtual screening[J].Biochemical Pharmacology, 2018, 154:148-160.
JUGEAU S, TENAUD I, KNOL A, et al.Induction of toll-like receptors by Propionibacterium acnes[J].British Journal of Dermatology, 2005, 153(6):1105-1113.
TANG H C, HUANG H J, LEE C C, et al.Network pharmacology-based approach of novel traditional Chinese medicine formula for treatment of acute skin inflammation in silico[J].Computational Biology and Chemistry, 2017, 71:70-81.
BIRCH H L.Extracellular matrix and ageing[M]//ROBIN HARRIS J, I K V. Biochemistry and Cell Biology of Ageing:Part I Biomedical Science. Singapore:Springer, 2018:169-190.
KENNEDY K, CAL R, CASEY R, et al.The anti-ageing effects of a natural peptide discovered by artificial intelligence[J].International Journal of Cosmetic Science, 2020, 42(4):388-398.
LEPHART E D.Skin aging and oxidative stress:Equol's anti-aging effects via biochemical and molecular mechanisms[J].Ageing Research Reviews, 2016, 31:36-54.
SHEN Y, LIU C M, CHI K M, et al.Development of a machine learning-based predictor for identifying and discovering antioxidant peptides based on a new strategy[J].Food Control, 2022, 131:108439.
SUNG J Y, KIM S G, KIM J R, et al.SIRT1 suppresses cellular senescence and inflammatory cytokine release in human dermal fibroblasts by promoting the deacetylation of NF-κB and activating autophagy[J].Experimental Gerontology, 2021, 150:111394.
AZMINAH A, ERLINA L, RADJI M, et al.In silico and in vitro identification of candidate SIRT1 activators from Indonesian medicinal plants compounds database[J].Computational Biology and Chemistry, 2019, 83:107096.
TAO S, PARK S L, DE LA VEGA M R, et al.Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2[J].Free Radical Biology and Medicine, 2015, 89:690-700.
LIEDER F, REISEN F, GEPPERT T, et al.Identification of UV-protective activators of nuclear factor erythroid-derived 2-related factor 2(Nrf2) by combining a chemical library screen with computer-based virtual screening[J].Journal of Biological Chemistry, 2012, 287(39):33001-33013.
YANG Y, WANG H P, WANG S Y, et al.GSK3β signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells[J].International Journal of Oncology, 2012, 41(5):1782-1788.
FU G, SIVAPRAKASAM P, DALE O R, et al.Pharmacophore modeling, ensemble docking, virtual screening, and biological evaluation on glycogen synthase kinase-3β[J].Molecular Informatics, 2014, 33(9):610-626.