分子模拟技术在食品组分互作体系及安全领域的应用研究进展
Research progress on the application of molecular simulation technology in food component interaction system and safety
-
摘要: 在食品加工和储存过程中,组分分子之间会发生复杂的相互作用,传统的实验方法难以从分子层面对影响食品营养价值和安全性的互作机制进行清晰直观的阐释。分子模拟技术基于分子模型研究分子行为以预测或解释宏观实验现象,具有客观、高效、成本低廉等优点,是连接微观与宏观尺度的重要桥梁。对该技术在食品组分互作体系、食品安全领域中的应用研究进展进行了综述,认为:分子模拟技术能够从原子/分子层面揭示食品营养物质分子间的互作机制、食品污染物的毒理机制及抑菌机理,表征分子构象的动态变化、电子转移、共价键断裂和重建等可视化数据,为改善食品的加工工艺和储存条件、提高食品的安全性等生产实践提供指导性建议。然而,近年来该技术在应用过程中存在大多数互作体系的研究相对独立、高反应性的分子在模拟过程中被认为是纯分离物或惰性物质等问题,今后应深入研究并逐步完善环境诱导下食品组分分子的构象变化、功能特性与食品品质三者之间的联系,以期为分子模拟技术在食品不同领域的实际应用提供参考。Abstract: In the process of food processing and storage, there are complex interactions between components and molecules.Traditional test methods are difficult to clearly and intuitively explain the interaction mechanism affecting the nutritional value and safety of food from the molecular level. Molecular simulation technology is based on molecular model to study molecular behavior to predict or explain macroscopic experimental phenomena. It has the advantages of high efficiency and low cost, and is an important bridge between micro and macro scale. The application of this technology in food component interaction system was reviewed. It was considered that molecular simulation technology could reveal the molecular interaction mechanism of food nutrients, toxicological mechanism and bacteriostatic mechanism of food contaminants from the atomic/molecular level, characterize visual data such as dynamic changes of molecular conformation, electron transfer, covalent bond breakage and reconstruction, and provide guiding suggestions for practical production practices such as improving food processing and storage conditions and improving food safety. However, in recent years, there are some problems in the application of this technology, such as relatively independent and highly reactive molecules are considered as pure isolates or inert substances in the process of simulation. In the future, we should deeply study and gradually improve the relationship among conformational changes, functional properties and food quality of food component molecules induced by environment, in order to provide reference for the practical application of molecular simulation technology in different fields of food.
-
Key words:
- molecular simulation technology /
- food component /
- interaction mechanism /
- food safety
-
-
[1]
CHEN G,HUANG K,MIAO M,et al.Molecular dynamics simulation for mechanism elucidation of food processing and safety: State of the art[J].Comprehensive Reviews in Food Science and Food Safety,2019,18(1):243-263.
-
[2]
CHEUNG D L.Conformations of myoglobin-derived peptides at the air-water interface[J].Langmuir,2016,32(18):4405-4414.
-
[3]
吴秋月.基于分子模拟黄曲霉毒素特异性多肽的筛选及传感器研究[D].天津:天津科技大学,2019.
-
[4]
NIAN B B,XU Y J,LIU Y F.Molecular dynamics simulation for mechanism revelation of the safety and nutrition of lipids and derivatives in food: State of the art[J].Food Research International,2021,145:110399.
-
[5]
TAO X,HUANG Y K,WANG C,et al.Recent developments in molecular docking technology applied in food science:A review[J].International Journal of Food Science & Technology,2020,55(1):33-45.
-
[6]
LAM R S H,NICKERSON M T.Food proteins:A review on their emulsifying properties using a structure-function approach[J].Food Chemistry,2013,141(2):975-984.
-
[7]
RICHON A B.An early history of the molecular modeling industry[J].Drug Discovery Today,2008,13(15/16):659-664.
-
[8]
FIELD M J.Technical advances in molecular simulation since the 1980s[J].Archives of Biochemistry and Biophysics,2015,582:3-9.
-
[9]
韩超,李成帅.分子模拟在膜分离方面的应用研究进展[J].山东化工,2021,50(15):71-72.
-
[10]
王娟娟,李海平.分子模拟技术在食品分子互作中的应用研究进展[J].食品与发酵工业,2022,48(14):292-302.
-
[11]
付媛,张美莉,张宇,等.基于量子化学计算分析裸燕麦源两种活性肽抗氧化机理的研究[J].食品科学,2022,43(23):106-112.
-
[12]
HUANG Z J,ZENG Y H,SUN Q Y,et al.Insights into the mechanism of flavor compound changes in strong flavor baijiu during storage by using the density functional theory and molecular dynamics simulation[J].Food Chemistry,2022,373:131522.
-
[13]
CHENG L L,ZHU X,HAMAKER B R,et al.Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation[J].Carbohydrate Polymers,2019,216:157-166.
-
[14]
BELLA G,ROTONDO A.Theoretical prediction of C-13 NMR spectrum of mixed triglycerides by mean of GIAO calculations to improve vegetable oils analysis[J].Chemistry and Physics of Lipids,2020,232:104973.
-
[15]
ZAHRA E,VAHIDEH M,BEHROUZ T.Probabilistic health risk assessment based on Monte Carlo simulation for pesticide residues in date fruits of Iran[J].Environmental Science and Pollution Research,2021,28(31):42037-42050.
-
[16]
SISWANTORO J,PRABUWONO A S,ABDULLAH A,et al.Monte carlo method with heuristic adjustment for irregularly shaped food product volume measurement[J].The Scientific World Journal,2014,2014:683048.
-
[17]
ABE H,KOYAMA K,KAWAMURA S,et al.Stochastic modeling of variability in survival behavior of Bacillus simplex spore population during isothermal inactivation at the single cell level using a Monte Carlo simulation[J].Food Microbiology,2019,82:436-444.
-
[18]
韩芬霞,范新景,耿升,等.异甘草素抑制α-葡萄糖苷酶的分子机制[J].食品科学,2019,40(15):37-42.
-
[19]
ROY S,NARANG B K,GUPTA M K,et al.Molecular docking studies on isocytosine analogues as xanthine oxidase inhibitors[J].Drug Research,2018,68(7):395-402.
-
[20]
JANMEJAYA R,CHANDRA S B,SUCHISMITAS,et al.Spectroscopic and computational insight into the conformational dynamics of hemoglobin in the presence of vitamin B12[J].International Journal of Biological Macromolecules,2021,189:306-315.
-
[21]
李泽业.分子动力学模拟成骨不全症中胶原蛋白的生物力学响应[D].天津:天津理工大学,2022.
-
[22]
杨雪清,刘吉元,张雅林.分子模拟技术及其在苹果蠹蛾代谢杀虫剂分子机制研究中的应用进展[J].生物安全学报,2015,24(4):265-273.
-
[23]
ZHANG Z Q,YAN K F,ZHANG J L.ReaxFF molecular dynamics simulations of the initial pyrolysis mechanism of unsaturated triglyceride[J].Journal of Molecular Modeling,2014,20(3):2127.
-
[24]
KOROLEVA M,TOKAREV A,YURTOV E.Modeling droplet aggregation and percolation clustering in emulsions[J]. Arabian Journal of Chemistry,2019,12(8):4458-4465.
-
[25]
FENG T,HU Z S,WANG K,et al.Emulsion-based delivery systems for curcumin:Encapsulation and interaction mechanism between debranched starch and curcumin[J].International Journal of Biological Macromolecules,2020,161:746-754.
-
[26]
SANG S Y,CHEN Y T,ZHU X,et al.Effect of egg yolk lipids on structure and properties of wheat starch in steamed bread[J].Journal of Cereal Science,2019,86:77-85.
-
[27]
RUSSELL C,ZOMPRA A A,SPYROULIAS G A,et al.The heat stability of Rhamnolipid containing egg-protein stabilised oil-in-water emulsions[J].Food Hydrocolloids,2021,116:106632.
-
[28]
熊强,丁立新,姜晓燕,等.X射线测定蛋白质结构的技术进展与研究现状[J].癌变·畸变·突变,2019,31(1):82-85.
-
[29]
LYU Q Q,WANG S,XU W H,et al.Structural insights into the substrate-binding mechanism for a novel chitosanase[J].Biochemical Journal,2014,461(2):335-345.
-
[30]
YU X X,LIANG W Y,YIN J Y,et al.Combining experimental techniques with molecular dynamics to investigate the impact of different enzymatic hydrolysis of β-lactoglobulin on the antigenicity reduction[J].Food Chemistry,2021,350:129139.
-
[31]
ZHANG J,ZHAO N,XU J N,et al.Exploring the catalytic mechanism of a novel β-glucosidase BGL0224 from Oenococcus oeni SD-2a:Kinetics, spectroscopic and molecular simulation[J].Enzyme and Microbial Technology,2021,148:109814.
-
[32]
ZHAO L Y,CHEN Z Y,LIN S,et al.In vitro biosynthesis of isobutyraldehyde through the establishment of a one-step self-assembly-based immobilization strategy[J].Journal of Agricultural and Food Chemistry,2021,69(48):14609-14619.
-
[33]
XIE F,ZHANG W,GONG S X,et al.Investigating lignin from Canna edulis ker residues induced activation of α-amylase: Kinetics,interaction, and molecular docking[J].Food Chemistry,2019,271:62-69.
-
[34]
FENG Y X,WANG Z C,CHEN J X,et al.Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal[J].Food Chemistry,2021,353:129471.
-
[35]
SCHESTKOWA H,WOLLBORN T,WESTPHAL A,et al.Conformational state and charge determine the interfacial stabilization process of beta-lactoglobulin at preoccupied interfaces[J].Journal of Colloid and Interface Science,2018,536:300-309.
-
[36]
ZHOU P,YANG C,REN Y R,et al.What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach[J].Food Chemistry, 2013,141(3):2967-2973.
-
[37]
SALMASO V,MORO S.Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process:An overview[J].Frontiers in Pharmacology,2018,9:923.
-
[38]
WU J H,RONG Y Z,WANG Z W,et al.Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction[J].Food Chemistry,2015,174:621-629.
-
[39]
PANDEY P,MALLAJOSYULA S S.Elucidating the role of key structural motifs in antifreeze glycoproteins[J]. Physical Chemistry Chemical Physics,2019,21(7):3903-3917.
-
[40]
DARMAWAN K K,KARAGIANNIS T C,HUGHES J G,et al.In silico modelling of apo-lactoferrin under simulated gastric conditions:Structural dynamics, binding with β-lactoglobulin and α-lactalbumin,and functional implications[J].LWT-Food Science and Technology, 2021,148:111726.
-
[41]
ENGELSEN S B,MONTEIRO C,DE PENHOAT C H,et al.The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy[J].Biophysical Chemistry,2001,93(2/3):103-127.
-
[42]
SAKHAEE N,SAKHAEE S,TAKALLOU A,et al.Hydrodynamic volume of trehalose and its water uptake mechanism[J].Biophysical Chemistry,2019,249:106145.
-
[43]
ZHANG B,CAO H J,LIN H M,et al.Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage[J].Food Chemistry,2019,278:482-490.
-
[44]
张光杰,谷令彪,周民生,等.角鲨烯/γ-环糊精包合物制备及分子模拟[J].食品科学,2019,40(20):28-33.
-
[45]
HERRERA A,RODRIGUEZ F J,BRUNA J E,et al.Antifungal and physicochemical properties of inclusion complexes based on β-cyclodextrin and essential oil derivatives[J].Food Research International,2019,121:127-135.
-
[46]
GREINER M,SONNLEITNER B,MAILANDER M,et al.Modeling complex and multi-component food systems in molecular dynamics simulations on the example of chocolate conching[J]. Food & Function,2013,5(2):235-242.
-
[47]
CHI C D,LI X X,FENG T,et al.Improvement in nutritional attributes of rice starch with dodecyl gallate complexation: A molecular dynamic simulation and in vitro study[J].Journal of Agricultural and Food Chemistry,2018,66(35):9282-9290.
-
[48]
BORAH P K,SARKAR A,DUARY R K.Water-soluble vitamins for controlling starch digestion:Conformational scrambling and inhibition mechanism of human pancreatic α-amylase by ascorbic acid and folic acid[J].Food Chemistry,2019,288:395-404.
-
[49]
CEN C N,CHEN J,WANG W Q,et al.Exploring the interaction mechanism of dietary protein ovalbumin and folic acid: A combination research of molecular simulation technology and multispectroscopy[J].Food Chemistry,2022,385:132536.
-
[50]
JAKOBEK L.Interactions of polyphenols with carbohydrates, lipids and proteins[J].Food Chemistry,2015,175:556-567.
-
[51]
CHAMIZO-GONZáLEZ F,GORDILLO B,HEREDIA F J.Elucidation of the 3D structure of grape seed 7S globulin and its interaction with malvidin 3-glucoside:A molecular modeling approach[J].Food Chemistry,2021,347:129014.
-
[52]
MOSTAFA A,THOMAS H,JANKA K,et al.Characterization and modeling of the interactions between coffee storage proteins and phenolic compounds[J].Journal of Agricultural and Food Chemistry,2012,60(46):11601-11608.
-
[53]
OSSMAN T,FABRE G,TROUILLAS P.Interaction of wine anthocyanin derivatives with lipid bilayer membranes[J].Computational and Theoretical Chemistry,2016,1077:80-86.
-
[54]
刘本国,刘江伟,李嘉琪,等.类黄酮抑制P糖蛋白的三维定量构效关系与作用模式[J].高等学校化学学报,2017,38(1):41-46.
-
[55]
DELLAFIORA L,OSWALD I P,DORNE J L,et al.An in silico structural approach to characterize human and rainbow trout estrogenicity of mycotoxins: Proof of concept study using zearalenone and alternariol[J].Food Chemistry,2020,312:126088.
-
[56]
CHU Y H,LI Y,WANG Y T,et al.Investigation of interaction modes involved in alkaline phosphatase and organophosphorus pesticides via molecular simulations[J].Food Chemistry,2018,254:80-86.
-
[57]
SUN Q M,ANG H Q,TANG P X,et al.Interactions of cinnamaldehyde and its metabolite cinnamic acid with human serum albumin and interference of other food additives[J].Food Chemistry,2018,243:74-81.
-
[58]
WU D,WANG J Q,LIU D Y,et al.Computational and spectroscopic analysis of interaction between food colorant citrus red 2 and human serum albumin[J].Scientific Reports,2019,9(1):1-8.
-
[59]
WANG X J,SONG M,LIU S T,et al.Analysis of phthalate plasticizer migration from PVDC packaging materials to food simulants using molecular dynamics simulations and artificial neural network[J].Food Chemistry,2020,317:126465.
-
[1]
计量
- PDF下载量: 90
- 文章访问数: 5741
- 引证文献数: 0