JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

电催化还原CO2反应体系研究进展

平丹 张逸飞 张桂伟 柴子涵 易峰 黄思光 韩敬莉

平丹, 张逸飞, 张桂伟, 等. 电催化还原CO2反应体系研究进展[J]. 轻工学报, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015
引用本文: 平丹, 张逸飞, 张桂伟, 等. 电催化还原CO2反应体系研究进展[J]. 轻工学报, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015
PING Dan, ZHANG Yifei, ZHANG Guiwei, et al. Research progress of reaction system for electrochemical CO2 reduction[J]. Journal of Light Industry, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015
Citation: PING Dan, ZHANG Yifei, ZHANG Guiwei, et al. Research progress of reaction system for electrochemical CO2 reduction[J]. Journal of Light Industry, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015

电催化还原CO2反应体系研究进展

    作者简介: 平丹(1990-),女,河南省林州市人,郑州轻工业大学讲师,博士,主要研究方向为电催化反应、复合功能材料。E-mail:danping@zzuli.edu.cn;
  • 基金项目: 国家自然科学基金项目(21808213);河南省自然科学基金项目(212300410299);郑州轻工业大学星空众创空间孵化项目(2020ZCKJ218);郑州轻工业大学博士基金项目(2018BSJJ024)

  • 中图分类号: O646

Research progress of reaction system for electrochemical CO2 reduction

  • Received Date: 2021-07-06
    Accepted Date: 2022-11-20

    CLC number: O646

  • 摘要: 针对电化学还原CO2反应(CO2ER)过电位较高、转化效率较低、产物选择性较差等问题,对CO2ER催化剂、电解液和电解池的最新研究进展进行综述,指出:现阶段开发的CO2ER催化剂主要包括金属纳米粒子、金属合金、金属氧化物、金属硫化物和金属单原子催化剂,可通过调变催化剂的形貌结构和颗粒尺寸、掺杂元素、引入结构缺陷等方式来提高催化剂的活性、选择性和稳定性;CO2ER体系的电解液主要包括水系电解液、离子液体电解液和有机溶剂电解液,目前应用比较广泛的是水系电解液,但其析氢副反应的发生会使产物选择性受到抑制,而离子液体电解液和有机溶剂电解液中CO2溶解度较大且可抑制析氢副反应的发生,这也是未来的主要应用研究方向;CO2ER用电解池主要包括H型电解池、连续式流动池和MEA反应器,其中MEA反应器是实现CO2电催化转化规模化应用的重要技术手段之一。未来需深入研究催化反应机理,探究其反应活性位点,实现反应催化性能和稳定性的精准调控,同时开发新型电解液和改进电解池设计,以进一步优化反应性能。
    1. [1]

      SCHNEIDER J,JIA H F,MUCKERMAN J T,et al.Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts[J].Chemical Society Reviews,2012,41(6):2036-2051.

    2. [2]

      LOW J X,DAI B Z,TONG C J,et al.In situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J].Advanced Materials,2019,31(6):1802981.

    3. [3]

      ZHANG S H,SHI J F,SUN Y,et al.Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide[J].ACS Catalysis,2019,9(5):3913-3925.

    4. [4]

      ZHANG X B,HAN S B,ZHU B E,et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation[J].Nature Catalysis,2020,3(4):411-417.

    5. [5]

      刘卫涛,张桂伟,平丹,等.聚苯胺基ZnFe-N-C的制备及其电还原CO2催化性能研究[J].轻工学报,2020,35(1):55-62.

    6. [6]

      APPEL A M,BERCAW J E,BOCATSLY A B,et al.Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J].Chemical Reviews, 2013,113(8):6621-6658.

    7. [7]

      PAN Y N,PASCHOALINO W J,BAYRAM S S,et al.Biosynthesized silver nanorings as a highly efficient and selective electrocatalysts for CO2 reduction[J].Nanoscale,2019,11(40):18595-18603.

    8. [8]

      KWOK K S,WANG Y X,CAO M C,et al.Nano-folded gold catalysts for electroreduction of carbon dioxide[J].Nano Letters,2019,19(12):9154-9159.

    9. [9]

      FENG Y,CHENG C Q,ZOU C Q,et al.Electroreduction of carbon dioxide in metallic nanopores through a pincer mechanism[J].Angewandte Chemie International Edition,2020,59(43):19459-19465.

    10. [10]

      LYU W X,ZHOU J,BEI J J,et al.Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate[J].Applied Surface Science, 2017,393:191-196.

    11. [11]

      CAO C,MA D D,GU J F,et al.Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J].Angewandte Chemie International Edition,2020,59(35):15014-15020.

    12. [12]

      ZHANG B X,ZHANG J L,HUA M L,et al.Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets[J].Journal of the American Chemical Society,2020,142(31):13603-13613.

    13. [13]

      JIAO J Q,LIN R,LIU S J,et al.Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J].Nature Chemistry,2019,11(3):222-228.

    14. [14]

      ZHANG W,HUANG C Q,XIAO Q,et al.A typical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J].Journal of the American Chemical Society,2020,142(26):11417-11427.

    15. [15]

      WANG Y X,SHEN H,KEN L,et al.Copper nanocubes for CO2 reduction in gas diffusion electrodes[J].Nano Letters,2019,19(12):8461-8648.

    16. [16]

      MARTIC N,RELLER C,MACACAULEY C,et al.Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction[J].Advanced Energy Materials,2019,9(29):1901228.

    17. [17]

      ZHENG X L,JI Y F,TANG J,et al.Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials[J].Nature Catalysis,2018,2(1):55-61.

    18. [18]

      REN D,GAO J,PAN L F,et al.Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J].Angewandte Chemie International Edition,2019,58(42):15036-15040.

    19. [19]

      WANG X,WANG Z Y,ARQUER F,et al.Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J].Nature Energy,2020,5(6):478-486.

    20. [20]

      MANTHIRAM K,BEBEERWYCK B J,ALIVISATOS A P.Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst[J]. Journal of the American Chemical Society,2014,136(38):13319-13325.

    21. [21]

      IYEBFAR P,HUANG J F,GREGORIO G L,et al.Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4[J].Chemical Communications,2019,55(60):8796-8799.

    22. [22]

      LI Y F,CUI F,ROSS M B,et al.Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires[J].Nano Letters,2017,17(2):1312-1317.

    23. [23]

      张钰宁,钮东方,胡硕真,等.基于纳米金属的增强效应在CO2电还原反应中的应用进展[J].电化学,2020,26(4):495-509.

    24. [24]

      CHANG C J,LIN S C,CHEN H C,et al.Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane[J].Journal of the American Chemical Society,2020,142(28):12119-12132.

    25. [25]

      KIM D,XIE C L,BECKNELL N,et al.Electrochemical activation of CO2through atomic ordering transformations of AuCu nanoparticles[J].Journal of the American Chemical Society,2017,139(24):8329-8336.

    26. [26]

      SARAH L,DAVID M,JULIETTE B,et al.High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure[J].Joule,2020,4(2):395-406.

    27. [27]

      ZHUANG G,CHEN Y,ZHUANG Z,et al.Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design[J].Science China Materials,2020,63(11):2089-2118.

    28. [28]

      CHEN Y,KANAN M W.Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J].Journal of the American Chemical Society,2012,134(4):1986-1989.

    29. [29]

      KANAN M W,LI C W.CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J].Journal of the American Chemical Society,2012,134(17):7231-7234.

    30. [30]

      QIN R X,LIU P X,FU G,et al.Strategies for stabilizing atomically dispersed metal catalysts[J].Small Methods,2018,2(1):1700286.

    31. [31]

      HAN Z,HU Q,CHENG Z,et al.High-performance overall CO2 splitting on hierarchical structured cobalt disulfide with partially removed sulfur edges[J].Advanced Functional Materials,2020,30(25):2000154.

    32. [32]

      ZHUANG T T,LIANG Z Q,SEIFITOKALDANI A,et al.Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J].Nature Catalysis,2018,1(6):421-428.

    33. [33]

      QIAO B T,WANG A Q,YANG X F,et al.Single-atom catalysis of CO oxidation using Pt1/FeO<i>x[J].Nature Chemistry,2011,3(8):634-641.

    34. [34]

      JU W,BAGGER A,HAO G P,et al.Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J].Nature Communications,2017,8(1):944-952.

    35. [35]

      PAN Y,SUN K A,LIU S J,et al.Core-shell ZIF-8@ZIF-67 derived CoP nanoparticles-embedded N-doped carbon nanotube hollow polyhedron for efficient over-all water splitting[J].Journal of the American Chemical Society,2018,140(7):2610-2618.

    36. [36]

      朱红林,李文英,黎挺挺,等.CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J].化学进展,2019,31(7):939-953.

    37. [37]

      XU C C,ZHI X,WANG D,et al.Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts[J].Small Structures,2020,2(1):2000058.

    38. [38]

      ZHENG W Z,CHEN F, ZENG Q,et al.A universal principle to accurately synthesize atomically dispersed metal-N-4 sites for CO2electroreduction[J].Nano-Micro Letters,2020,12:108.

    39. [39]

      JIN S,NI Y X,HAO Z M,et al.A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts[J].Angewandte Chemie International Edition,2020,59(49):2885-21889.

    40. [40]

      LI X G,XI S B,SUN L B,et al.Isolated FeN4 sites for efficient electrocatalytic CO2 reduction[J].Advanced Science,2020,7(17):2001545.

    41. [41]

      JIAO L,YANG W J,WAN G,et al.Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures[J].Angewandte Chemie International Edition,2020,59(46):20589-20595.

    42. [42]

      FAN Q,HOU P F,CHIO C,et al.Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2[J].Advanced Energy Materials,2020,10(5):1903068.

    43. [43]

      FENG J Q,GAO H S,ZHENG L R,et al.A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction[J].Nature Communications,2020,11(1):4341.

    44. [44]

      GONG Y A,JIAO L,QIAN Y Y,et al.Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction[J].Angewandte Chemie-International Edition,2020,132(7):2727-2731.

    45. [45]

      LI Z D,HE D,YAN X,et al.Size-dependent nickel-based electrocatalysts for selective CO2 reduction[J]. Angewandte Chemie-International Edition,2020,132(42):18731-18736.

    46. [46]

      SHANG H S,WANG T,PEI J J,et al.Design of a single-atom indium (delta+)-N4 interface for efficient electroreduction of CO2 to formate[J].Angewandte Chemie International Edition,2020,59(50):22465-22469.

    47. [47]

      JIANG Z L,WANG T,PEI J J,et al.Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency[J].Energy & Environmental Science,2020,13(9):2856-2863.

    48. [48]

      WU S D,LYU X N,PIN D,et al.Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO[J].Electrochimica Acta,2020,340:135930.

    49. [49]

      LU P L,YANG Y J,YAO J N,et al.Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction[J].Applied Catalysis B-Environmental,2019,241:113-119.

    50. [50]

      GU J,HSU C S,BAI L C,et al.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J].Science,2019,364(6445):1091-1094.

    51. [51]

      WANG X Q,CHEN Z,ZHAO X Y,et al.Regulation of coordination number over single Co sites:Triggering the efficient electroreduction of CO2[J].Angewandte Chemie International Edition,2018,130(7):1962-1966.

    52. [52]

      彭奎霖,李桂林,江重阳,等.电解液调控CO2电催化还原性能微观机制的研究进展[J].高等学校化学学报,2022,43(7):20220238.

    53. [53]

      HUANG Y J,CUI G K,ZHAO Y L,et al.Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J].Chemical Communications,2019,56(43):13293-13297.

    54. [54]

      BJORN B,PRABUDDHA M,JOHN L H,et al.Vibrational sum-frequency generation study of the CO2 electrochemical reduction at Pt/EMIM-BF4 solid/liquid interfaces[J].Journal of Electroanalytical Chemistry,2017,800:144-150.

    55. [55]

      CHU D B,QIN G X,YUAN X M,et al.Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution[J].ChemSusChem,2008,1(3):205-209.

    56. [56]

      ASADI M,KUMAR B,BEHRANGINIA A,et al.Robust carbon dioxide reduction on molybdenum disulphide edges[J].Nature Communications,2014,5:4470.

    57. [57]

      KANECO S,IIBA K,KATSUMATA H,et al.Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol[J].Journal of Solid State Electrochemistry,2007,11(4):490-495.

    58. [58]

      SUN Z,MA T,TAO H,et al.Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J].Chem,2017,3(4):560-587.

    59. [59]

      范佳,韩娜,李彦光.基于流动池的电化学二氧化碳还原研究进展[J].电化学,2020,26(4):510520.

    60. [60]

      CHEM Z,ZHANG X,LIU W,et al.Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level[J].Energy & Environmental Science,2021,14:2349-2356.

    61. [61]

      XU Y,EDWARDS J P,LIU S,et al.Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability[J].ACS Energy Letters,2021,6(2):809-815.

    62. [62]

      ZHENG T T,JIANG K,TA N,et al.Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J].Joule,2019,3(1):265-278.

    1. [1]

      张建栋杨忠泮吴恋恋徐大勇朱萍张雯晶堵劲松 . 基于高光谱成像及机器学习的烟叶糖料液施加量判别模型. 轻工学报, 2024, 39(5): 86-94. doi: 10.12187/2024.05.010

    2. [2]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

    3. [3]

      李敏贺姗姗杨钰雯 . 改良QuEChERS方法结合超高效液相色谱测定火腿肠中杂环胺类化合物. 轻工学报, 2024, 39(5): 60-70. doi: 10.12187/2024.05.007

  • 加载中
计量
  • PDF下载量:  28
  • 文章访问数:  3462
  • 引证文献数: 0
文章相关
  • 收稿日期:  2021-07-06
  • 修回日期:  2022-11-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
平丹, 张逸飞, 张桂伟, 等. 电催化还原CO2反应体系研究进展[J]. 轻工学报, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015
引用本文: 平丹, 张逸飞, 张桂伟, 等. 电催化还原CO2反应体系研究进展[J]. 轻工学报, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015
PING Dan, ZHANG Yifei, ZHANG Guiwei, et al. Research progress of reaction system for electrochemical CO2 reduction[J]. Journal of Light Industry, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015
Citation: PING Dan, ZHANG Yifei, ZHANG Guiwei, et al. Research progress of reaction system for electrochemical CO2 reduction[J]. Journal of Light Industry, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015

电催化还原CO2反应体系研究进展

    作者简介:平丹(1990-),女,河南省林州市人,郑州轻工业大学讲师,博士,主要研究方向为电催化反应、复合功能材料。E-mail:danping@zzuli.edu.cn
  • 1. 郑州轻工业大学 材料与化学工程学院, 河南 郑州 450001;
  • 2. 河南师范大学 国际教育学院, 河南 新乡 453000
基金项目:  国家自然科学基金项目(21808213);河南省自然科学基金项目(212300410299);郑州轻工业大学星空众创空间孵化项目(2020ZCKJ218);郑州轻工业大学博士基金项目(2018BSJJ024)

摘要: 针对电化学还原CO2反应(CO2ER)过电位较高、转化效率较低、产物选择性较差等问题,对CO2ER催化剂、电解液和电解池的最新研究进展进行综述,指出:现阶段开发的CO2ER催化剂主要包括金属纳米粒子、金属合金、金属氧化物、金属硫化物和金属单原子催化剂,可通过调变催化剂的形貌结构和颗粒尺寸、掺杂元素、引入结构缺陷等方式来提高催化剂的活性、选择性和稳定性;CO2ER体系的电解液主要包括水系电解液、离子液体电解液和有机溶剂电解液,目前应用比较广泛的是水系电解液,但其析氢副反应的发生会使产物选择性受到抑制,而离子液体电解液和有机溶剂电解液中CO2溶解度较大且可抑制析氢副反应的发生,这也是未来的主要应用研究方向;CO2ER用电解池主要包括H型电解池、连续式流动池和MEA反应器,其中MEA反应器是实现CO2电催化转化规模化应用的重要技术手段之一。未来需深入研究催化反应机理,探究其反应活性位点,实现反应催化性能和稳定性的精准调控,同时开发新型电解液和改进电解池设计,以进一步优化反应性能。

English Abstract

参考文献 (62) 相关文章 (3)

目录

/

返回文章