基于改进G-四链体DNA酶的电化学适配体传感器构建及卡那霉素高灵敏检测
Construction of electrochemical aptasensor for highly sensitive detection of kanamycin based on the improved G-quadruplex DNAzyme
-
摘要: 将阳离子多肽(peptide)与G-四链体DNA酶(G4 DNAzyme)共价组装得到高活性的G4 DNAzyme-peptide复合物,进一步构建新型电化学适配体传感器,研究该复合物对电化学适配体传感器响应性能的影响,并将该传感器用于牛奶中卡那霉素(KANA)的检测分析。结果表明:G4 DNAzyme-peptide可以显著放大电化学信号,明显提高传感器检测灵敏度;在捕获探针序列最优浓度(2.0 μmol/L)下,电流信号强度变化与目标物浓度(0.06 pmol/L~20 nmol/L)对数值呈良好的线性关系,检测限为0.02 pmol/L,优于其他KANA检测方法;该传感器对KANA具有良好的选择性,在实际牛奶样品检测中,KANA的加标回收率为97.1%~105.5%,相对标准差为3.60%~5.74%,且检测结果与ELISA法一致,说明该传感器能够实现牛奶中KANA的高灵敏检测。Abstract: A highly active G4 DNAzyme-peptide complex obtained by covalent assembly of cationic peptide on G4 DNAzyme was used to construct a novel electrochemical aptasensor. The effect of complex on the performance of electrochemical aptasensor was investigated and the proposed aptasensor was used to detect kanamycin (KANA) in milk. The experimental results indicated that G4 DNAzyme-peptide could significantly amplify the electrochemical signal and greatly improve the detection sensitivity of aptasensor. Under the optimal concentration of capture probe (CP, 2.0 μmol/L), the change of current intensity showed a good linear relationship with the logarithm of the target concentration in the range of 0.06 pmol/L~20 nmol/L, and the detection limit was 0.02 pmol/L, which was superior to other KANA detection methods. The aptasensor showed better selectivity and lower detection limit and the recoveries obtained in milk sample were from 97.1% to 105.5% and the relative standard deviation were from 3.60% to 5.74%. The experimental results were consistent with ELISA method, indicating the proposed aptasensor could achieve high sensitivity for the detection of KANA in milk.
-
Key words:
- G-quadruplex DNAzyme /
- electrochemical aptasensor /
- kanamycin /
- high sensitivity
-
-
[1]
ZHAO T T, CHEN Q, WEN Y L, et al.A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy[J].Food Chemistry, 2022, 377:132072.
-
[2]
程岁寒, 潘存锋, 张彦.高效液相色谱法在兽用抗生素残留分析中的应用[J].国外医药(抗生素分册), 2019, 40(1):27-41.
-
[3]
陈燕, 李康柏, 许均图, 等.液相色谱串联质谱法检测水产品中17种抗生素残留量[J].现代食品, 2021(9):201-204.
-
[4]
李兴华, 苗俊杰, 康凯, 等.固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J].理化检验(化学分册), 2019, 55(7):769-777.
-
[5]
LI R, WEN Y, YANG L, et al.Development of an enzyme-linked immunosorbent assay based on viral antigen capture by anti-spike glycoprotein monoclonal antibody for detecting immunoglobulin a antibodies against porcine epidemic diarrhea virus in milk[J].BMC Veterinary Research, 2023, 19(1):1-11.
-
[6]
杨亚琴, 冯书惠, 胡永建, 等.气相色谱-质谱法测定绿茶中草甘膦和氨甲基膦酸残留量[J].茶叶科学, 2020, 40(1):125-132.
-
[7]
YU M K, XIE Y, WANG X Y, et al.Highly water-stable dye@Ln-MOFs for sensitive and selective detection toward antibiotics in water[J].ACS Applied Materials and Interfaces, 2019, 11(23):21201-21210.
-
[8]
TIAN L, ZHANG Y, WANG L B, et al.Ratiometric dual signal-enhancing-based electrochemical biosensor for ultrasensitive kanamycin detection[J].ACS Applied Materials and Interfaces, 2020, 12(47):52713-52720.
-
[9]
ZHOU C, ZOU H M, SUN C, et al.Recent advances in biosensors for antibiotic detection:Selectivity and signal amplification with nanomaterials[J].Food Chemistry, 2021, 361(3):130109.
-
[10]
HUANG W, ZHOU Y, ZHAN D Y, et al.Homogeneous biorecognition reaction-induced assembly of DNA nanostructures for ultrasensitive electrochemical detection of kanamycin antibiotic[J].Analytica Chimica Acta, 2021, 1154:338317.
-
[11]
LI M X, CHENG J, YUAN Z Y, et al.Sensitive electrochemical detection of microRNA based on DNA walkers and hyperbranched HCR-DNAzyme cascade signal amplification strategy[J].Sensors and Actuators B:Chemical, 2021, 345:130348.
-
[12]
LEI C, JLABC F, CHEN C D, et al.Dual-signal amplification electrochemical sensing for the sensitive detection of uranyl ion based on gold nanoparticles and hybridization chain reaction-assisted synthesis of silver nanoclusters[J].Analytica Chimica Acta, 2021, 1184:338986.
-
[13]
CHOWDHURY S, WANG J, NUCCIO S P, et al.Short LNA-modified oligonucleotide probes as efficient disruptors of DNA G-quadruplexes [J].Nucleic Acids Research, 2022, 50(13):7247-7259.
-
[14]
CHEN Y, QIU D H, ZHANG X B, et al.Highly sensitive biosensing applications of a magnetically immobilizable covalent G-quadruplex-hemin DNAzyme catalytic system[J].Analytical Chemistry, 2022, 94(4):2212-2219.
-
[15]
HASHKAVAYI A B, RAOOF J B, PARK K S.Sensitive electrochemical detection of tryptophan using a hemin/G-quadruplex aptasensor[J].Chemosensors, 2020, 8(4):100.
-
[16]
SONG K M, CHO M, JO H, et al.Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer[J].Analytical Biochemistry, 2011, 415(2):175-181.
-
[17]
ÉCIJA-ARENAS Á, KIRCHNER E M, HIRSCH T, et al.Development of an aptamer-based SPR-biosensor for the determination of kanamycin residues in foods[J].Analytica Chimica Acta, 2021, 1169:338631.
-
[18]
LIU M, YANG Z Q, LI B X, et al.Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk[J].Food Chemistry, 2021, 339:128059.
-
[19]
DENG J K, LIU Y Q, LIN X D, et al.A ratiometric fluorescent biosensor based on cascaded amplification strategy for ultrasensitive detection of kanamycin[J].Sensors and Actuators, 2018, 273:1495-1500.
-
[20]
GENG H C, CHEN X X, SUN L L, et al.ZnCuInSe/Au/TiO2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin[J].Analytica Chimica Acta, 2020, 1146:166-173.
-
[21]
WANG L N, ZHANG L, YU Y, et al.DNA cyclic assembling control in an electrochemical strategy with MoS2@AuNPs for determination of kanamycin [J].Microchimica Acta, 2021, 188(8):1-9.
-
[1]
计量
- PDF下载量: 19
- 文章访问数: 1690
- 引证文献数: 0