JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

乳白耙菌预处理对烟秆发酵产乳酸的影响

宋丽丽 霍姗浩 冯梦琪 杨旭 张志平 张靖楠 魏涛

宋丽丽, 霍姗浩, 冯梦琪, 等. 乳白耙菌预处理对烟秆发酵产乳酸的影响[J]. 轻工学报, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011
引用本文: 宋丽丽, 霍姗浩, 冯梦琪, 等. 乳白耙菌预处理对烟秆发酵产乳酸的影响[J]. 轻工学报, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011
SONG Lili, HUO Shanhao, FENG Mengqi, et al. Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks[J]. Journal of Light Industry, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011
Citation: SONG Lili, HUO Shanhao, FENG Mengqi, et al. Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks[J]. Journal of Light Industry, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011

乳白耙菌预处理对烟秆发酵产乳酸的影响

    作者简介: 宋丽丽(1987-),女,河南省信阳市人,郑州轻工业大学讲师,博士,主要研究方向为烟草生物技术。E-mail:sll@zzuli.edu.cn;
  • 基金项目: 国家自然科学基金项目(21706244);河南省科技攻关项目(222102320331,232102321144,232102110150)

  • 中图分类号: TS49

Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks

  • Received Date: 2023-04-03
    Accepted Date: 2023-05-27

    CLC number: TS49

  • 摘要: 针对烟秆结构致密、尼古丁抑制作用强及纤维质糖类物质转化效率低等问题,采用乳白耙菌预处理烟秆,比较预处理前后烟秆组分和结构变化,研究乳白耙菌预处理对烟秆酶解糖化效果的影响,并进一步比较不同发酵方式下(同步糖化发酵、分批发酵)凝结芽孢杆菌发酵烟秆后乳酸的转化率。结果表明:经乳白耙菌预处理20 d后,烟秆中木质素质量分数较原料烟秆降低了44.90%,乳白耙菌可选择性地破坏木质素大分子结构,木质素苯环及侧链基团均存在不同程度的降解;乳白耙菌预处理后的烟秆纤维素可反应性提升,葡萄糖的产量为260 mg/g,较原料烟秆提高了2.25倍;相较于分批发酵,同步糖化发酵的乳酸产量较高(392.16 mg/g),乳酸转化率达到86.95%,较原料烟秆提高了3.78倍。乳白耙菌预处理可选择性降解烟秆木质素,降低烟秆酶解糖化抗性,提升烟秆乳酸的转化率。
    1. [1]

      GUO G N, LIU X, LI R, et al.Characterization of tobacco stalk lignin using nuclear magnetic resonance spectrometry and its pyrolysis behavior at different temperatures[J].Journal of Analytical and Applied Pyrolysis, 2019, 142:104665.

    2. [2]

      SU Y L, XIAN H, SHI S J, et al.Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk[J].BMC Biotechnology, 2016, 16:81.

    3. [3]

      龚贵平, 吴波, 刘林培, 等.秸秆基乳酸微生物细胞工厂研究进展[J].南京工业大学学报(自然科学版), 2022, 44(5):556-565.

    4. [4]

      AJALA E O, OLONADE Y O, AJALA M A, et al.Lactic acid production from lignocellulose:A review of major challenges and selected solutions[J].ChemBioEng Reviews, 2020, 7(2):38.

    5. [5]

      ESQUIVEL-HERNÁNDEZ D A, GARCÍA-PÉREZ J S, LÓPEZ-PACHECO I Y, et al.Resource recovery of lignocellulosic biomass waste into lactic acid-trends to sustain cleaner production[J].Journal of Environmental Management, 2022, 301:113925.

    6. [6]

      ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K, et al.Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria:Overview and limits[J].Journal of Biotechnology, 2011, 156(4):286-301.

    7. [7]

      KUO Y C, YUAN S F, WANG C A, et al.Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain[J].Bioresource Technology, 2015, 198:651-657.

    8. [8]

      NWAMBA M C, SUN F B, MUKASEKURU M R, et al.Trends and hassles in the microbial production of lactic acid from lignocellulosic biomass[J].Environmental Technology and Innovation, 2021, 21:101337.

    9. [9]

      宋丽丽, 张志平, 王光路, 等.不同预处理方法对烟杆酶解产糖和结构特征的影响[J].轻工学报, 2019, 34(3):52-59.

    10. [10]

      秦梦彤, 胡婧, 李冠华.生物质生物预处理研究进展与展望[J].中国生物工程杂志, 2018, 38(5):85-91.

    11. [11]

      KANT B S, AHUJA V, CHANDEL N, et al.Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes[J].Bioresource Technology, 2022, 358:127437.

    12. [12]

      DHARMARAJA J, SHOBANA S, ARVINDNARAYAN S, et al.Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications[J].Bioresource Technology, 2023, 369:128328.

    13. [13]

      NIU D Z, YU C Y, ZHENG M H, et al.Effects of ensiling on Irpex lacteus fermentation in wheat straw:Chemical composition, in vitro rumen digestibility, and fungal community[J].Animal Feed Science and Technology, 2022, 292:115433.

    14. [14]

      SONG L L, YU H B, MA F Y, et al.Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover[J].Bioresources, 2013, 8(3):3802-3816.

    15. [15]

      BRETHAUER S, ROBERT L S, MICHAEL H S.Enhanced simultaneous saccharification and fermentation of pretreated beech wood by in situ treatment with the white rot fungus Irpex lacteus in a membrane aerated biofilm reactor[J].Bioresource Technology, 2017, 237:135-138.

    16. [16]

      DAVINIA S, ALICIA P, EUGENIA V M, et al.Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus[J].Bioresource Technology, 2013, 131:218-225.

    17. [17]

      MALACHOVA K, RYBKOVA Z, SEZIMOVA H, et al.Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater[J].Water Research, 2013, 47(19):7143-7148.

    18. [18]

      王凯军, 石川, 刘越.有机固废厌氧发酵产物的转化制备与应用进展[J].环境工程学报, 2021, 15(6):1840-1861.

    19. [19]

      陈铭浩, 刘志豪, 王永红.凝结芽孢杆菌混合碳源乳酸发酵研究[J].食品工业科技, 2023, 44(6):155-161.

    20. [20]

      ZHANG Y M, CHEN X R, LUO J Q, et al.An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22[J].Bioresource Technology, 2014, 158:396-399.

    21. [21]

      SLUITER A, HAMES B, RUIZ R, et al.Determination of structural carbohydrates and lignin in biomass[J].Laboratory Analytical Procedure, 2008, 1617(1):1-16.

    22. [22]

      宋丽丽, 霍姗浩, 孙永威, 等.复合菌群协同发酵烟梗的降解特性及微生物多样性研究[J].轻工学报, 2023, 38(1):63-70.

    23. [23]

      JIANG S, XU P, TAO F.L-lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue[J].Bioresource Technology Reports, 2019, 6:131-137.

    24. [24]

      ZHAO L, ZHANG J Y, ZHAO D Y, et al.Biological degradation of lignin:A critical review on progress and perspectives[J].Industrial Crops and Products, 2022, 188:115715.

    25. [25]

      BASAK B, KUMAR R, BHARADWAJ S, et al.Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel productions[J].Bioresource Technology, 2023, 369:128413.

    26. [26]

      SINGH R, SINGH S, TRIMUKHE K D, et al.Lignin-carbohydrate complexes from sugarcane bagasse:Preparation, purification, and characterization[J].Carbohydrate Polymers, 2005, 62:57-66.

    27. [27]

      SCHMATZ A A, SALAZAR-BRYAM A M, CONTIERO J, et al.Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility[J].Bioenergy Research, 2021, 14:106-121.

    28. [28]

      HIDALGO D, CASTRO J, DÍEZ D, et al.Torrefaction at low temperature as a promising pretreatment of lignocellulosic biomass in anaerobic digestion[J].Energy, 2023, 263:125822.

    29. [29]

      BENITO-GONZÁLEZ I, JAÉN-CANO C M, LÓPEZ-RUBIO A, et al.Valorisation of vine shoots for the development of cellulose-based biocomposite films with improved performance and bioactivity[J].International Journal of Biological Macromolecules, 2020, 165:1540-1551.

    30. [30]

      MOONEY C A, MANSFIELD S D, TOUHY M G, et al.The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods[J].Bioresource Technology, 1998, 64(2):113-119.

    31. [31]

      解先利, 刘云云, 曹运齐, 等.木质纤维素酶水解分形动力学的研究进展[J].新能源进展, 2021, 9(5):426-433.

    32. [32]

      NIDETZKY B, STEINER W, HAYN M.Enzymatic hydrolysis of wheat straw after steam pretreatment:Experimental data and kinetic modelling[J].Bioresource Technology, 1993, 44(1):25-32.

    33. [33]

      YANG B, WYMAN C E.BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates[J].Biotechnology and Bioengineering, 2006, 94(4):611-61.

    34. [34]

      ROMANÍ A, TOMAZ P D, GARROTE G, et al.Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept[J].Bioresource Technology, 2016, 220:323-332.

    35. [35]

      余洪波. 三种类型木质纤维素的白腐菌降解异质性研究[D].武汉:华中科技大学, 2007.

    36. [36]

      RAWOOF S A A, KUMAR P S, VO D V N, et al.Production of optically pure lactic acid by microbial fermentation:A review[J].Environmental Chemistry Letters, 2021, 19:539-556.

    1. [1]

      张改红许航杜帅徐月莹石栋栋薛晶晶尚紫博毛多斌 . 麦芽酚-β-D-葡萄糖苷的稳定性及其在卷烟加香中的应用. 轻工学报, 2024, 39(5): 102-108. doi: 10.12187/2024.05.012

    2. [2]

      卢晓波徐海朱俊召张宇谭健高冠男胡军华林龙 . 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  1604
  • 引证文献数: 0
文章相关
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-05-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
宋丽丽, 霍姗浩, 冯梦琪, 等. 乳白耙菌预处理对烟秆发酵产乳酸的影响[J]. 轻工学报, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011
引用本文: 宋丽丽, 霍姗浩, 冯梦琪, 等. 乳白耙菌预处理对烟秆发酵产乳酸的影响[J]. 轻工学报, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011
SONG Lili, HUO Shanhao, FENG Mengqi, et al. Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks[J]. Journal of Light Industry, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011
Citation: SONG Lili, HUO Shanhao, FENG Mengqi, et al. Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks[J]. Journal of Light Industry, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011

乳白耙菌预处理对烟秆发酵产乳酸的影响

    作者简介:宋丽丽(1987-),女,河南省信阳市人,郑州轻工业大学讲师,博士,主要研究方向为烟草生物技术。E-mail:sll@zzuli.edu.cn
  • 郑州轻工业大学 食品与生物工程学院, 河南 郑州 450001
基金项目:  国家自然科学基金项目(21706244);河南省科技攻关项目(222102320331,232102321144,232102110150)

摘要: 针对烟秆结构致密、尼古丁抑制作用强及纤维质糖类物质转化效率低等问题,采用乳白耙菌预处理烟秆,比较预处理前后烟秆组分和结构变化,研究乳白耙菌预处理对烟秆酶解糖化效果的影响,并进一步比较不同发酵方式下(同步糖化发酵、分批发酵)凝结芽孢杆菌发酵烟秆后乳酸的转化率。结果表明:经乳白耙菌预处理20 d后,烟秆中木质素质量分数较原料烟秆降低了44.90%,乳白耙菌可选择性地破坏木质素大分子结构,木质素苯环及侧链基团均存在不同程度的降解;乳白耙菌预处理后的烟秆纤维素可反应性提升,葡萄糖的产量为260 mg/g,较原料烟秆提高了2.25倍;相较于分批发酵,同步糖化发酵的乳酸产量较高(392.16 mg/g),乳酸转化率达到86.95%,较原料烟秆提高了3.78倍。乳白耙菌预处理可选择性降解烟秆木质素,降低烟秆酶解糖化抗性,提升烟秆乳酸的转化率。

English Abstract

参考文献 (36) 相关文章 (2)

目录

/

返回文章