JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 6
December 2023
Article Contents
SONG Lili, HUO Shanhao, FENG Mengqi, et al. Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks[J]. Journal of Light Industry, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011
Citation: SONG Lili, HUO Shanhao, FENG Mengqi, et al. Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks[J]. Journal of Light Industry, 2023, 38(6): 85-92. doi: 10.12187/2023.06.011 shu

Effect of pretreatment with Irpex lacteus on lactic acid production from tobacco stalks

  • Received Date: 2023-04-03
    Accepted Date: 2023-05-27
  • To solve the problems of dense structure of tobacco stalk, strong nicotine inhibition and low conversion efficiency of cellulosic sugars, the tobacco stalks were pretreated with Irpex lacteus. The composition and structure changes of tobacco stalks before and after pretreatment were compared to study the effects of I. lacteus pretreatment on enzymatic hydrolysis and saccharification of tobacco stalks. The conversion rate of lactic acid from tobacco stalks fermented by Bacillus coagulans under different fermentation conditions (simultaneous saccharification fermentation, batch fermentation) was further compared. The results showed that the mass fraction of lignin in the tobacco stalks was reduced by 44.90% compared with that of the raw tobacco stalks. Biological pretreatment using I. lacteus could selectively destroy the macromolecular structure of lignin, and the benzene ring structure and side chain groups of lignin were also degraded. The reactivity of cellulose in tobacco stalks was improved after pretreatment with I. lacteus and the yield of glucose was 260 mg/g, which was enhanced by 2.25 times compared with raw tobacco stalks. Compared with batch fermentation, the lactic acid yield of simultaneous saccharification fermentation was higher (392.16 mg/g), and the conversion rate of lactic acid reached 86.95%, which was 3.78 times higher than that of raw tobacco stalks. The pretreatment of I. lacteus could selectively degrade lignin of tobacco stalks, reduce the resistance of enzymatic hydrolysis to saccharification of tobacco stalks and increase the conversion rate of lactic acid of tobacco stalks.
  • 加载中
    1. [1]

      GUO G N, LIU X, LI R, et al.Characterization of tobacco stalk lignin using nuclear magnetic resonance spectrometry and its pyrolysis behavior at different temperatures[J].Journal of Analytical and Applied Pyrolysis, 2019, 142:104665.

    2. [2]

      SU Y L, XIAN H, SHI S J, et al.Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk[J].BMC Biotechnology, 2016, 16:81.

    3. [3]

      龚贵平, 吴波, 刘林培, 等.秸秆基乳酸微生物细胞工厂研究进展[J].南京工业大学学报(自然科学版), 2022, 44(5):556-565.

    4. [4]

      AJALA E O, OLONADE Y O, AJALA M A, et al.Lactic acid production from lignocellulose:A review of major challenges and selected solutions[J].ChemBioEng Reviews, 2020, 7(2):38.

    5. [5]

      ESQUIVEL-HERNÁNDEZ D A, GARCÍA-PÉREZ J S, LÓPEZ-PACHECO I Y, et al.Resource recovery of lignocellulosic biomass waste into lactic acid-trends to sustain cleaner production[J].Journal of Environmental Management, 2022, 301:113925.

    6. [6]

      ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K, et al.Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria:Overview and limits[J].Journal of Biotechnology, 2011, 156(4):286-301.

    7. [7]

      KUO Y C, YUAN S F, WANG C A, et al.Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain[J].Bioresource Technology, 2015, 198:651-657.

    8. [8]

      NWAMBA M C, SUN F B, MUKASEKURU M R, et al.Trends and hassles in the microbial production of lactic acid from lignocellulosic biomass[J].Environmental Technology and Innovation, 2021, 21:101337.

    9. [9]

      宋丽丽, 张志平, 王光路, 等.不同预处理方法对烟杆酶解产糖和结构特征的影响[J].轻工学报, 2019, 34(3):52-59.

    10. [10]

      秦梦彤, 胡婧, 李冠华.生物质生物预处理研究进展与展望[J].中国生物工程杂志, 2018, 38(5):85-91.

    11. [11]

      KANT B S, AHUJA V, CHANDEL N, et al.Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes[J].Bioresource Technology, 2022, 358:127437.

    12. [12]

      DHARMARAJA J, SHOBANA S, ARVINDNARAYAN S, et al.Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications[J].Bioresource Technology, 2023, 369:128328.

    13. [13]

      NIU D Z, YU C Y, ZHENG M H, et al.Effects of ensiling on Irpex lacteus fermentation in wheat straw:Chemical composition, in vitro rumen digestibility, and fungal community[J].Animal Feed Science and Technology, 2022, 292:115433.

    14. [14]

      SONG L L, YU H B, MA F Y, et al.Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover[J].Bioresources, 2013, 8(3):3802-3816.

    15. [15]

      BRETHAUER S, ROBERT L S, MICHAEL H S.Enhanced simultaneous saccharification and fermentation of pretreated beech wood by in situ treatment with the white rot fungus Irpex lacteus in a membrane aerated biofilm reactor[J].Bioresource Technology, 2017, 237:135-138.

    16. [16]

      DAVINIA S, ALICIA P, EUGENIA V M, et al.Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus[J].Bioresource Technology, 2013, 131:218-225.

    17. [17]

      MALACHOVA K, RYBKOVA Z, SEZIMOVA H, et al.Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater[J].Water Research, 2013, 47(19):7143-7148.

    18. [18]

      王凯军, 石川, 刘越.有机固废厌氧发酵产物的转化制备与应用进展[J].环境工程学报, 2021, 15(6):1840-1861.

    19. [19]

      陈铭浩, 刘志豪, 王永红.凝结芽孢杆菌混合碳源乳酸发酵研究[J].食品工业科技, 2023, 44(6):155-161.

    20. [20]

      ZHANG Y M, CHEN X R, LUO J Q, et al.An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22[J].Bioresource Technology, 2014, 158:396-399.

    21. [21]

      SLUITER A, HAMES B, RUIZ R, et al.Determination of structural carbohydrates and lignin in biomass[J].Laboratory Analytical Procedure, 2008, 1617(1):1-16.

    22. [22]

      宋丽丽, 霍姗浩, 孙永威, 等.复合菌群协同发酵烟梗的降解特性及微生物多样性研究[J].轻工学报, 2023, 38(1):63-70.

    23. [23]

      JIANG S, XU P, TAO F.L-lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue[J].Bioresource Technology Reports, 2019, 6:131-137.

    24. [24]

      ZHAO L, ZHANG J Y, ZHAO D Y, et al.Biological degradation of lignin:A critical review on progress and perspectives[J].Industrial Crops and Products, 2022, 188:115715.

    25. [25]

      BASAK B, KUMAR R, BHARADWAJ S, et al.Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel productions[J].Bioresource Technology, 2023, 369:128413.

    26. [26]

      SINGH R, SINGH S, TRIMUKHE K D, et al.Lignin-carbohydrate complexes from sugarcane bagasse:Preparation, purification, and characterization[J].Carbohydrate Polymers, 2005, 62:57-66.

    27. [27]

      SCHMATZ A A, SALAZAR-BRYAM A M, CONTIERO J, et al.Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility[J].Bioenergy Research, 2021, 14:106-121.

    28. [28]

      HIDALGO D, CASTRO J, DÍEZ D, et al.Torrefaction at low temperature as a promising pretreatment of lignocellulosic biomass in anaerobic digestion[J].Energy, 2023, 263:125822.

    29. [29]

      BENITO-GONZÁLEZ I, JAÉN-CANO C M, LÓPEZ-RUBIO A, et al.Valorisation of vine shoots for the development of cellulose-based biocomposite films with improved performance and bioactivity[J].International Journal of Biological Macromolecules, 2020, 165:1540-1551.

    30. [30]

      MOONEY C A, MANSFIELD S D, TOUHY M G, et al.The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods[J].Bioresource Technology, 1998, 64(2):113-119.

    31. [31]

      解先利, 刘云云, 曹运齐, 等.木质纤维素酶水解分形动力学的研究进展[J].新能源进展, 2021, 9(5):426-433.

    32. [32]

      NIDETZKY B, STEINER W, HAYN M.Enzymatic hydrolysis of wheat straw after steam pretreatment:Experimental data and kinetic modelling[J].Bioresource Technology, 1993, 44(1):25-32.

    33. [33]

      YANG B, WYMAN C E.BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates[J].Biotechnology and Bioengineering, 2006, 94(4):611-61.

    34. [34]

      ROMANÍ A, TOMAZ P D, GARROTE G, et al.Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept[J].Bioresource Technology, 2016, 220:323-332.

    35. [35]

      余洪波. 三种类型木质纤维素的白腐菌降解异质性研究[D].武汉:华中科技大学, 2007.

    36. [36]

      RAWOOF S A A, KUMAR P S, VO D V N, et al.Production of optically pure lactic acid by microbial fermentation:A review[J].Environmental Chemistry Letters, 2021, 19:539-556.

Article Metrics

Article views(1606) PDF downloads(13) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return