JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 6
December 2023
Article Contents
WANG Jinbang, CHI Zhexiang, LI Yuanyuan, et al. Research status and prospects of tobacco in the field of fuel preparation[J]. Journal of Light Industry, 2023, 38(6): 118-126. doi: 10.12187/2023.06.015
Citation: WANG Jinbang, CHI Zhexiang, LI Yuanyuan, et al. Research status and prospects of tobacco in the field of fuel preparation[J]. Journal of Light Industry, 2023, 38(6): 118-126. doi: 10.12187/2023.06.015 shu

Research status and prospects of tobacco in the field of fuel preparation

  • Received Date: 2023-04-15
    Accepted Date: 2023-07-05
  • In order to avoid environmental pollution and resource waste produced during the production and processing of tobacco, this paper systematically reviewed the current status of fuel utilization of tobacco and its wastes and showed that:The preparation method of tobacco solid fuel was simple and convenient, but the requirements for equipment were high. Among them, tobacco briquette charcoal was more easily transported and stored, clean and environmentally friendly, furthermore, the combustion residue could also be used for secondary utilization in agriculture.The preparation method of liquid fuel preparation was relatively mature. The operation of the direct extraction technology was simple, but the bio-oil yield depended on the inherent fat content in tobacco raw materials. Therofore, it required higher requirements for tobacco varieties. The thermal chemical conversion method belonged to a chemical process with high energy consumption, but there is a large space for innovation with regard to the preparation method. The chemical composition of liquid fuels could be adjusted, having a huge development potential. The fermentation method produced a single product, mainly ethanol, with low efficiency at present. There has been no breakthrough in the pretreatment technology for scalable application of tobacco raw materials throughout the entire technical chain.The preparation method of gaseous fuel was still in the exploration stage, with high energy consumption and low yield. The tech-economic feasibility was poor. In the future, much more attention should be paid on tobacco briquette charcoal, tobacco fermentation for fuel ethanol production, tobacco catalytic pyrolysis for liquid fuel, as well as the cultivation of novel tobacco varieties targeted towards specific energy purpose. This will further promote the industrialized development of multiple purposes of tobacco.
  • 加载中
    1. [1]

      王金棒, 贾楠, 汪志波, 等.烟草主要废弃物在多孔材料领域的研究进展[J].烟草科技, 2020, 53(12):96-105.

    2. [2]

      王金棒, 胡斌.烟草多用途技术与应用[M].郑州:郑州大学出版社, 2021.

    3. [3]

      陈振国.典型烟草废弃物热转化的机理研究及应用[D].武汉:华中科技大学, 2018.

    4. [4]

      林燕辉.烟秆生物质炭化与成型燃料制备及性能表征[D].杭州:浙江大学, 2015.

    5. [5]

      侯家萍, 王闻, 张蕾欣, 等.现代生物质能源技术体系及其产业化应用态势[J].现代化工, 2022, 42(5):7-13.

    6. [6]

      张得政, 张霞, 杨飞, 等.菌苞、木屑和烟秆颗粒燃料成型特性研究[J].农机化研究, 2017, 39(10):241-245.

    7. [7]

      宋春宇, 张体高, 朱晋熙, 等.烟秆秸秆压块在烟叶烘烤中的应用研究初报[J].湖南农业科学, 2016(3):82-84.

    8. [8]

      WANG L, FAN Y K, HE F, et al.Screening and testing of anti-slagging agents for tobacco-stalk-based biomass pellet fuel for tobacco curing[J].Processes, 2022, 10(9):1690.

    9. [9]

      莫静之.烟杆生物质燃料在烟叶烘烤中的应用研究[D].长沙:湖南农业大学, 2019.

    10. [10]

      CAI J X, LI B, CHEN C Y, et al.Hydrothermal carbonization of tobacco stalk for fuel application[J].Bioresource Technology, 2016, 220:305-311.

    11. [11]

      苟文涛, 王晓剑, 钟俊周, 等.不同配方生物质燃料物理特性与燃烧特性研究[J].安徽农业科学, 2018, 46(24):177-181
      , 223.

    12. [12]

      WANG X F, XU G Z, ZHANG B L, et al.Application of tobacco stems briquetting in tobacco flue-curing in rural area of China[J].International Journal of Agricultural & Biological Engineering, 2015, 8(6):84-88.

    13. [13]

      廖稷邦, 刘迎春, 陈鹏飞, 等.烟杆与配煤混燃特性及协同作用研究[J].煤炭技术, 2021, 40(9):200-203.

    14. [14]

      CONG K L, HAN F, ZHANG Y G, et al.The investigation of co-combustion characteristics of tobacco stalk and low rank coal using a macro-TGA[J].Fuel, 2019, 237:126-132.

    15. [15]

      谭方利, 樊士军, 董艳辉, 等.生物质压块燃料及煤炭燃料在烟叶烘烤中的应用效果对比研究[J].现代农业科技, 2014(10):201, 209.

    16. [16]

      饶月, 刘芮, 杨飞, 等.烟秆和木屑生物质颗粒燃料成型工艺参数优化[J].可再生能源, 2019, 37(5):650-655.

    17. [17]

      温丽娜, 陶琼, 欧阳进, 等.农林生物质原料热值比较及烟杆-玉米杆生物质燃料优化配方研究[J].湖南农业科学, 2016(1):43-46.

    18. [18]

      陈晶铃.烟杆裂解及微波膨化的研究[D].淮南:安徽理工大学, 2009.

    19. [19]

      BARLA F G, KUMAR S.Tobacco biomass as a source of advanced biofuels[J].Biofuels, 2019, 10(3):335-346.

    20. [20]

      ALAGIC S, STANCIC I, PALIC R, et al.Chemical composition of the supercritical CO2 extracts of the Yaka, Prilep and Otlja tobaccos[J].Journal of Essential Oil Research, 2006, 18(2):185-188.

    21. [21]

      ANDRIANOV V, BORISJUK N, POGREBNYAK N, et al.Tobacco as a production platform for biofuel:Overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass[J].Plant Biotechnology Journal, 2010, 8(3):277-287.

    22. [22]

      FATICA A, DI LUCIA F, MARINO S, et al.Study on analytical characteristics of Nicotiana tabacum L., cv.Solaris biomass for potential uses in nutrition and biomethane production[J].Scientific Reports, 2019, 9(1):16828.

    23. [23]

      陈冠益, 马文超, 颜蓓蓓, 等.生物质废物资源综合利用技术[M].北京:化学工业出版社, 2015.

    24. [24]

      PVTVN A E, ÖNAL E, UZUN B B, et al.Comparison between the "slow" and "fast" pyrolysis of tobacco residue[J].Industrial Crops and Products, 2007, 26(3):307-314.

    25. [25]

      BOOKER C J, BEDMUTHA R, SCOTT I M, et al.Bioenergy Ⅱ:Characterization of the pesticide properties of tobacco bio-oil[J].International Journal of Chemical Reactor Engineering, 2010, 8:A26.

    26. [26]

      BOOKER C J, BEDMUTHA R, VOGEL T, et al.Experimental investigations into the insecticidal, fungicidal, and bactericidal properties of pyrolysis bio-oil from tobacco leaves using a fluidized bed pilot plant[J].Industrial & Engineering Chemistry Research, 2010, 49(20):10074-10079.

    27. [27]

      YAN B C, ZHANG S P, CHEN W B, et al.Pyrolysis of tobacco wastes for bio-oil with aroma compounds[J].Journal of Analytical and Applied Pyrolysis, 2018, 136:248-254.

    28. [28]

      STREZOV V, POPOVIC E, FILKOSKI R V, et al.Assessment of the thermal processing behavior of tobacco waste[J].Energy & Fuels, 2012, 26(9):5930-5935.

    29. [29]

      ONOREVOLI B, DA SILVA MACIEL G P, MACHADO M E, et al.Characterization of feedstock and biochar from energetic tobacco seed waste pyrolysis and potential application of biochar as an adsorbent[J].Journal of Environmental Chemical Engineering, 2018, 6(1):1279-1287.

    30. [30]

      HOSSAIN M M, SCOTT I M, BERRUTI F, et al.A two-dimensional pyrolysis process to concentrate nicotine during tobacco leaf bio-oil production[J].Industrial Crops and Products, 2018, 124:136-141.

    31. [31]

      HOSSAIN M M, SCOTT I M, BERRUTI F, et al.Optimizing pyrolysis reactor operating conditions to increase nicotine recovery from tobacco leaves[J].Journal of Analytical and Applied Pyrolysis, 2015, 112:80-87.

    32. [32]

      HOSSAIN M M, SCOTT I M, BERRUTI F, et al.Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils[J].Journal of Environmental Science and Health, Part B(Pesticides, Food Contaminants, and Agricultural Wastes), 2016, 51(12):860-867.

    33. [33]

      HOSSAIN M M, SCOTT I M, BERRUTI F, et al.Application of novel pyrolysis reactor technology to concentrate bio-oil components with antioxidant activity from tobacco, tomato and coffee ground biomass[J].Waste and Biomass Valorization, 2018, 9(9):1607-1617.

    34. [34]

      AKALIN M K, KARAGÖZ S.Pyrolysis of tobacco residue.Part 2:Catalytic[J].BioResources, 2011, 6(2):1773-1805.

    35. [35]

      CARDOSO C R, ATAÍDE C H.Micropyrolysis of tobacco powder at 500℃:Influence of ZnCl2 and MgCl2 contents on the generation of products[J].Chemical Engineering Communications, 2015, 202(4):484-492.

    36. [36]

      CARDOSO C R, ATAÍDE C H.Analytical pyrolysis of tobacco residue:Effect of temperature and inorganic additives[J].Journal of Analytical and Applied Pyrolysis, 2013, 99:49-57.

    37. [37]

      SOPHANODORN K, UNPAPROM Y, WHANGCHAI K, et al.Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production[J].Biomass Conversion and Biorefinery, 2022, 12(5):1627-1637.

    38. [38]

      吴创之, 马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社, 2003.

    39. [39]

      MARTÍN C, FERNÁNDEZ T, GARCÍA R, et al.Preparation of hydrolysates from tobacco stalks and ethanolic fermentation by Saccharomyces cerevisiae[J].World Journal of Microbiology and Biotechnology, 2002, 18(9):857-862.

    40. [40]

      MARTÍN C, FERNÁNDEZ T, GARCÍA A, et al.Wet oxidation pretreatment of tobacco stalks and orange waste for bioethanol production.Preliminary results[J].Cellulose Chemistry and Technology, 2008, 42(7/8):429-434.

    41. [41]

      谢兆钟, 李汉民, 吴进德.利用烟草废弃物生产酒精的方法:200810070873[P].2008-02-05.

    42. [42]

      谢丽萍, 赵晓祥, 杨虹蛟, 等.烟草下脚料发酵制取乙醇[J].环境工程学报, 2010, 4:1417-1420.

    43. [43]

      SARBISHEI S, GOSHADROU A, HATAMIPOUR M S.Mild sodium hydroxide pretreatment of tobacco product waste to enable efficient bioethanol production by separate hydrolysis and fermentation[J].Biomass Conversion and Biorefinery, 2021, 11(6):2963-2973.

    44. [44]

      SCIENCE DAILY.Genetically modified tobacco plants are viable for producing biofuels[EB/OL].(2013-10-14)[2023-04-15].https://www.sciencedaily.com/releases/2013/10/131014094119.htm.

    45. [45]

      FARRAN I, MILLAN A F S, ANCIN M, et al.Increased bioethanol production from commercial tobacco cultivars overexpressing thioredoxin f grown under field conditions[J].Molecular Breeding, 2014, 34(2):457-469.

    46. [46]

      邱志丹, 连宇昌, 卢雨, 等.烟秆与木屑配方生物质燃料在烟叶烘烤中的应用[J].福建农林大学学报(自然科学版), 2021, 50:10-15.

    47. [47]

      杨益, 烟草废弃物热解和气化的实验及机理研究[D].武汉:华中科技大学, 2012.

    48. [48]

      ENCINAR J M, BELTRÁN F J, GONZÁLEZ J F, et al.Pyrolysis of maize, sunflower, grape and tobacco residues[J].Journal of Chemical Technology and Biotechnology, 1997, 70(4):400-410.

    49. [49]

      AYAS N, KARADENIZ S.Hydrogen from tobacco waste[C]//Proceedings of the 2nd International Conference Sustainable and Renewable Energy Engineering.Hiroshima:IEEE, 2017.

    50. [50]

      KLAAS M, GREENHALF C, FERRANTE L, et al.Optimisation of hydrogen production by steam reforming of chars derived from lumber and agricultural residues[J].International Journal of Hydrogen Energy, 2015, 40(9):3642-3647.

    51. [51]

      田甜, 李清海, 李文妮, 等.温度和水蒸气流量对烟秆高温气化的影响[J].环境工程学报, 2016, 10(4):1973-1978.

    52. [52]

      MADENOGLU T G, KURT S, SAGLAM M, et al.Hydrogen production from some agricultural residues by catalytic subcritical and supercritical water gasification[J].The Journal of Supercritical Fluids, 2012, 67:22-28.

    53. [53]

      MEHER K K, PANCHWAGH A M, RANGRASS S, et al.Biomethanation of tobacco waste[J].Environmental Pollution, 1995, 90(2):199-202.

    54. [54]

      陈智远, 姚建刚.秸秆厌氧干发酵产沼气的研究[J].农业工程技术(新能源产业), 2009(10):24-26.

    55. [55]

      GONZÁLEZ-GONZÁLEZ A, CUADROS F.Optimal and cost-effective industrial biomethanation of tobacco[J].Renewable Energy, 2014, 63:280-285.

    56. [56]

      WANG C H, LI L Q, CHEN R F, et al.Thermal conversion of tobacco stem into gaseous products[J].Journal of Thermal Analysis and Calorimetry, 2019, 137(3):811-823.

Article Metrics

Article views(953) PDF downloads(20) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return