JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

超声微波协同提升贡柑片热风干燥效率的研究

肖更生 沈乔眉 林可为 王锋 刘东杰 马路凯

肖更生, 沈乔眉, 林可为, 等. 超声微波协同提升贡柑片热风干燥效率的研究[J]. 轻工学报, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001
引用本文: 肖更生, 沈乔眉, 林可为, 等. 超声微波协同提升贡柑片热风干燥效率的研究[J]. 轻工学报, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001
XIAO Gengsheng, SHEN Qiaomei, LIN Kewei, et al. Ultrasonic-microwave synergistic processing improvement of hot air drying efficiency for citrus Gonggan slices[J]. Journal of Light Industry, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001
Citation: XIAO Gengsheng, SHEN Qiaomei, LIN Kewei, et al. Ultrasonic-microwave synergistic processing improvement of hot air drying efficiency for citrus Gonggan slices[J]. Journal of Light Industry, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001

超声微波协同提升贡柑片热风干燥效率的研究

    作者简介: 肖更生(1965—),男,湖南省衡阳市人,乌克兰工程院外籍院士,仲恺农业工程学院研究员,主要研究方向为农产品加工与贮藏。E-mail:gshxiao@aliyun.com;
  • 基金项目: 广东省大创项目(S20221134705)
    国家自然科学基金项目(31901734)
    “十四五”广东省农业科技创新十大主攻方向“揭榜挂帅”项目(2024KJ15)
    广东省普通高校特色创新项目(2022KTSCX053)

  • 中图分类号: TS255.35

Ultrasonic-microwave synergistic processing improvement of hot air drying efficiency for citrus Gonggan slices

  • Received Date: 2023-09-22
    Accepted Date: 2023-11-14
    Available Online: 2024-08-15

    CLC number: TS255.35

  • 摘要: 借助动力学、热力学等方法,研究不同热风干燥温度下贡柑片在干燥过程中的干燥规律、动力学模型、水分迁移、热力学参数等,解析超声微波协同预处理对热风干燥贡柑片干燥效率的影响。结果表明:贡柑片的干燥过程遵循Two term exponential模型,干燥速率与干燥温度有关,且当干燥温度为80 ℃时,干燥速率最快;超声微波协同预处理可有效缩短贡柑片的干燥时间(缩短了0.5~1.5 h),并显著降低其水分扩散的活化能(降低了1.620 kJ/mol);同一热风干燥温度下,超声微波协同预处理组的ΔH、ΔS和ΔG均低于对照组;超声微波协同预处理可提高贡柑片的水分扩散有效系数(4.333×10-7~8.967×10-7),使其表面形成更多孔道。因此,超声微波协同预处理可有效提高贡柑片的热风干燥效率。
    1. [1]

      EL-MESERY H S,FARAG H A,KAMEL R M,et al.Convective hot air drying of grapes:Drying kinetics,mathematical modeling,energy,thermal analysis[J].Journal of Thermal Analysis and Calorimetry,2023,148(14):6893-6908.

    2. [2]

      DE ARAUJO M E V,BARBOSA E G,LOPES R P,et al.Infrared drying of pear slices:Drying kinetics,energy,and exergy analysis[J].Journal of Food Process Engineering,2021,44(12):e13915.

    3. [3]

      孟克迪,张国治,王赵改,等.基于GC-IMS联用技术分析不同干燥方式对香椿挥发性成分的影响[J].轻工学报,2023,38(3):25-34.

    4. [4]

      ZHANG L H,LIAO L,QIAO Y,et al.Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying[J].Food Chemistry,2020,303:125386.

    5. [5]

      WANG L,WEN H C,YANG N W,et al.Effect of vacuum freeze drying and hot air drying on dried mulberry fruit quality[J].PLoS One,2023,18(6):e0283303.

    6. [6]

      PROSAPIO V,LOPEZ-QUIROGA E.Freeze-drying technology in foods[J].Foods,2020,9(7):920.

    7. [7]

      肖更生,林可为,沈乔眉,等.岭南特色水果干燥加工技术研究进展[J].轻工学报,2023,38(4):1-10.

    8. [8]

      MENG Z F,CUI X N,LIU Y,et al.Effect of electrohydrodynamics on hot air drying characteristics of fruits and vegetables[J].Sustainable Energy Technologies and Assessments,2022,53:102716.

    9. [9]

      谭宏渊,凌玉钊,黄丽琪,等.不同预处理对热风干燥山药片品质特性及微观结构的影响[J].食品工业科技,2023,44(20):43-52.

    10. [10]

      苑丽婧,何秀,林蓉,等.超声预处理对猕猴桃水分状态及热风干燥特性的影响[J].农业工程学报,2021,37(13):263-272.

    11. [11]

      KROEHNKE J,SZADZISKA J,STASIAK M,et al.Ultrasound-and microwave-assisted convective drying of carrots-Process kinetics and product’s quality analysis[J].Ultrasonics Sonochemistry,2018,48:249-258.

    12. [12]

      SZADZIŃSKA J,KOWALSKI S,STASIAK M.Microwave and ultrasound enhancement of convective drying of strawberries:Experimental and modeling efficiency[J].International Journal of Heat and Mass Transfer,2016,103:1065-1074.

    13. [13]

      REDONDO-CUENCA A,GARCÍA-ALONSO A,RODRÍ- GUEZ-ARCOS R,et al.Nutritional composition of green Asparagus (Asparagus officinalis L.),edible part and by-products,and assessment of their effect on the growth of human gut-associated bacteria[J].Food Research International,2023,163:112284.

    14. [14]

      胡益波,毛国兴,陈霖红,等.德庆贡柑共产物的营养组成研究[J].农产品加工,2022(24):47-50,54.

    15. [15]

      TARAFDAR A,SHAHI N C,SINGH A.Freeze-drying behaviour prediction of button mushrooms using artificial neural network and comparison with semi-empirical models[J].Neural Computing and Applications,2019,31(11):7257-7268.

    16. [16]

      MALAN A,KAMBOJ V,SHARMA A K,et al.Mathematical modelling of solar drying of a novel composite desiccant[J].International Journal of Ambient Energy,2019,40(1):28-34.

    17. [17]

      颜伟强.颗粒状切割块茎类蔬菜微波喷动均匀干燥特性及模型研究[D].无锡:江南大学,2011.

    18. [18]

      王定仙,孙慧英,杜海燕,等.微波干燥马铃薯预处理工艺研究[J].农产品加工,2021(22):17-20.

    19. [19]

      赵学伟,魏益民,张波.热重分析法研究小米挤压膨化产品的干燥动力学[J].郑州轻工业学院学报(自然科学版),2011,26(4):17-21
      ,88.

    20. [20]

      张鑫,任元元,孟资宽,等.马铃薯非油炸挤出方便面热风干燥特性及动力学研究[J].粮油食品科技,2021,29(2):135-142.

    21. [21]

      楚文靖,盛丹梅,张楠,等.红心火龙果热风干燥动力学模型及品质变化[J].食品科学,2019,40(17):150-155.

    22. [22]

      VISHKARMA K,SUMAN R,SHARANAGAT V S,et al.Modeling of hot air drying kinetics of Tofu[J].Agricultural Engineering Today,2015,39(3):47-56.

    23. [23]

      马路凯.植物油中丙二醛、4-羟基-2-己烯醛和4-羟基-2-壬烯醛的热响应机制研究[D].广州:华南理工大学,2019.

    24. [24]

      卿果,徐剑,缪艳燕,等.枸杞浸膏微波真空干燥特性及干燥动力学模型研究[J].食品工业科技,2023,44(5):222-229.

    25. [25]

      WANG J,YANG X H,MUJUMDAR A S,et al.Effects of various blanching methods on weight loss,enzymes inactivation,phytochemical contents,antioxidant capacity,ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.)[J].LWT-Food Science and Technology,2017,77:337-347.

    26. [26]

      PEI Y S,LI Z F,SONG C F,et al.Analysis and modelling of temperature and moisture gradient for ginger slices in hot air drying[J].Journal of Food Engineering,2022,323:111009.

    27. [27]

      TAN S,MIAO Y W,ZHOU C B,et al.Effects of hot air drying on drying kinetics and anthocyanin degradation of blood-flesh peach[J].Foods,2022,11(11):1596.

    28. [28]

      SZADZISKA J,KOWALSKI S,STASIAK M.Microwave and ultrasound enhancement of convective drying of strawberries:Experimental and modeling efficiency[J].International Journal of Heat and Mass Transfer,2016,103:1065-1074.

    29. [29]

      梁秋萍,严学迎.超声辅助热风干燥对芒果干品质的影响[J].中国食品添加剂,2022,33(12):205-210.

    30. [30]

      FAAL S,TAVAKOLI T,GHOBADIAN B.Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer[J].Journal of Food Science and Technology,2015,52(5):2950-2957.

    31. [31]

      CHEN Y N,DONG H J,LI J K,et al.Evaluation of a nondestructive NMR and MRI method for monitoring the drying process of Gastrodia elata blume[J].Molecules,2019,24(2):236.

    32. [32]

      刘鹤,焦俊华,田友,等.马铃薯片热风干燥特性及收缩动力学模型[J].食品工业科技,2022,43(11):58-64.

    33. [33]

      REZA T M,REZA F,MOHAMADTAGHI G,et al.Thermal antioxidative kinetics of sesamol in triacylglycerols and fatty acid methyl esters of sesame,olive,and canola oils[J].Journal of the American Oil Chemists’ Society,2021,98(8):871-880.

    34. [34]

      DE OLIVEIRA G Q,DO NASCIMENTO R A,COSTA J F,et al.Drying of banana pseudo-stem fibers:Evaluation of kinetic models,effective diffusivity,thermodynamic properties,and structural characterization[J].Journal of Natural Fibers,2020,19:3654-3667.

    35. [35]

      王德瑶.橡胶干燥过程的动态模拟[D].哈尔滨:哈尔滨工业大学,2006.

    36. [36]

      FARHOOSH R,HOSEINI-YAZDI S Z.Evolution of oxidative values during kinetic studies on olive oil oxidation in the rancimat test[J].Journal of the American Oil Chemists’ Society,2014,91(2):281-293.

    37. [37]

      戚思影.低频超声预处理对脱水香菇品质及风味的影响[D].扬州:扬州大学,2021.

    38. [38]

      MANTOVANI M S,BELLINI M F,ANGELI J P F,et al.Beta-Glucans in promoting health:Prevention against mutation and cancer[J].Mutation Research,2008,658(3):154-161.

    39. [39]

      CHEN Z G,GUO X Y,WU T.A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods[J].Ultrasonics Sonochemistry,2016,30:28-34.

    1. [1]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

    2. [2]

      章存勇庄海锋时雅琪邹鹏丁乃红纵坤贾良元郭东锋 . 国内外雪茄烟叶热解产物差异性研究. 轻工学报, 2024, 0(0): -.

    3. [3]

      章存勇庄海锋时雅琪邹鹏丁乃红纵坤贾良元郭东锋 . 国内外雪茄烟叶热解产物差异性研究. 轻工学报, 2024, 39(5): 118-126. doi: 10.12187/2024.05.014

    4. [4]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 0(0): -.

    5. [5]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 39(5): 29-39. doi: 10.12187/2024.05.004

  • 加载中
计量
  • PDF下载量:  36
  • 文章访问数:  1816
  • 引证文献数: 0
文章相关
  • 收稿日期:  2023-09-22
  • 修回日期:  2023-11-14
  • 刊出日期:  2024-08-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
肖更生, 沈乔眉, 林可为, 等. 超声微波协同提升贡柑片热风干燥效率的研究[J]. 轻工学报, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001
引用本文: 肖更生, 沈乔眉, 林可为, 等. 超声微波协同提升贡柑片热风干燥效率的研究[J]. 轻工学报, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001
XIAO Gengsheng, SHEN Qiaomei, LIN Kewei, et al. Ultrasonic-microwave synergistic processing improvement of hot air drying efficiency for citrus Gonggan slices[J]. Journal of Light Industry, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001
Citation: XIAO Gengsheng, SHEN Qiaomei, LIN Kewei, et al. Ultrasonic-microwave synergistic processing improvement of hot air drying efficiency for citrus Gonggan slices[J]. Journal of Light Industry, 2024, 39(4): 1-8. doi: 10.12187/2024.04.001

超声微波协同提升贡柑片热风干燥效率的研究

    作者简介:肖更生(1965—),男,湖南省衡阳市人,乌克兰工程院外籍院士,仲恺农业工程学院研究员,主要研究方向为农产品加工与贮藏。E-mail:gshxiao@aliyun.com
  • 仲恺农业工程学院 轻工食品学院/农业农村部岭南特色食品绿色加工与智能制造重点实验室/广东省岭南特色食品科学与技术重点实验室, 广东 广州 510225
基金项目:  广东省大创项目(S20221134705)国家自然科学基金项目(31901734)“十四五”广东省农业科技创新十大主攻方向“揭榜挂帅”项目(2024KJ15)广东省普通高校特色创新项目(2022KTSCX053)

摘要: 借助动力学、热力学等方法,研究不同热风干燥温度下贡柑片在干燥过程中的干燥规律、动力学模型、水分迁移、热力学参数等,解析超声微波协同预处理对热风干燥贡柑片干燥效率的影响。结果表明:贡柑片的干燥过程遵循Two term exponential模型,干燥速率与干燥温度有关,且当干燥温度为80 ℃时,干燥速率最快;超声微波协同预处理可有效缩短贡柑片的干燥时间(缩短了0.5~1.5 h),并显著降低其水分扩散的活化能(降低了1.620 kJ/mol);同一热风干燥温度下,超声微波协同预处理组的ΔH、ΔS和ΔG均低于对照组;超声微波协同预处理可提高贡柑片的水分扩散有效系数(4.333×10-7~8.967×10-7),使其表面形成更多孔道。因此,超声微波协同预处理可有效提高贡柑片的热风干燥效率。

English Abstract

参考文献 (39) 相关文章 (5)

目录

/

返回文章