JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 39 Issue 5
October 2024
Article Contents
LI Yankun, ZHANG Wei and LIU Yanling. Research and application progress of data fusion strategy in authenticity identification of edible oil[J]. Journal of Light Industry, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006
Citation: LI Yankun, ZHANG Wei and LIU Yanling. Research and application progress of data fusion strategy in authenticity identification of edible oil[J]. Journal of Light Industry, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006 shu

Research and application progress of data fusion strategy in authenticity identification of edible oil

  • Received Date: 2023-11-15
    Accepted Date: 2024-01-18
    Available Online: 2024-10-15
  • An overview of data fusion strategies based on spectroscopy, mass spectrometry, chromatography and other detection technologies and their current research and application in authenticity identification of edible oils was presented, pointing out that: at present, detection technologies widely used for authenticity identification of edible oils including spectroscopy, chromatography, mass spectrometry and electronic sensors. However, a single detection technique often focused only on a specific data or index, which could not fully eliminate the superposition effect, baseline drift and noise when the ingredients contained in edible oils were more complex. Data fusion strategies were categorized into three types: data layer fusion, feature layer fusion and decision layer fusion. Combined with chemometrics methods, the data obtained by different detection technologies could be integrated to obtain and extract richer data feature information, thus improving the authenticity identification of edible oils. Data fusion between various novel detection technologies, or between new and traditional spectroscopy, mass spectrometry, chromatography and other detection technologies, which could quickly and accurately achieved the identification of adulteration of edible oils, variety classification and origin traceability. In the future, in-depth research could be carried out on the improvement of the existing analytical methods, the development of new fusion algorithms combined with deep learning algorithms, and the introduction of cloud computing to improve real-time edible oil identification, so as to promote the development of data fusion strategy in the field of edible oil authenticity identification.
  • 加载中
    1. [1]

      ZHANG T,LIU Y Y,DAI Z P,et al.Quantitative detection of extra virgin olive oil adulteration,as opposed to peanut and soybean oil,employing LED-induced fluorescence spectroscopy[J].Sensors,2022,22(3):1227.

    2. [2]

      孔令琦,宋佳琪,陈林林,等.食用油掺伪鉴别技术及模型建立的研究进展[J].食品安全质量检测学报,2022,13(19):6132-6139.

    3. [3]

      SALAH W A,NOFAL M.Review of some adulteration detection techniques of edible oils[J].Journal of the Science of Food and Agriculture,2021,101(3):811-819.

    4. [4]

      程慧,刘顺,关洪宣.两种滴定法测定食用油中过氧化值和酸价的不确定度评价[J].食品与机械,2022,38(1):73-77
      ,99.

    5. [5]

      邓焯文,陈喆,付家顺,等.数据融合策略在食品产地溯源中的应用进展[J].分析化学,2023,51(1):11-21.

    6. [6]

      李艳坤,许东情.基于中红外光谱模型对食用植物油掺伪的判别[J].河北大学学报(自然科学版),2022,42(6):605-610.

    7. [7]

      王九玲,罗文,李文凯.反向传播神经网络算法结合拉曼荧光光谱法定量检测特级初榨橄榄油掺假[J].食品安全质量检测学报,2023,14(22):126-133.

    8. [8]

      戴嘉伟,王海朋,陈瀑,等.多光谱数据融合分析技术的研究和应用进展[J].分析化学,2022,50(6):839-849.

    9. [9]

      杨巧玲,邓晓军,孙晓东,等.光谱数据融合技术在食品检测中的应用研究进展[J].食品工业科技,2020,41(18):324-329.

    10. [10]

      孙婷婷,钟瑾璟,刘剑波,等.茶油掺伪定性鉴别模型的对比分析[J].中国粮油学报,2022,37(11):245-252.

    11. [11]

      DU Q W,ZHU M T,SHI T,et al.Adulteration detection of corn oil,rapeseed oil and sunflower oil in camellia oil by in situ diffuse reflectance near-infrared spectroscopy and chemometrics[J].Food Control,2021,121:107577.

    12. [12]

      YUAN Z,ZHANG L X,WANG D,et al.Detection of flaxseed oil multiple adulteration by near-infrared spectroscopy and nonlinear one class partial least squares discriminant analysis[J].LWT-Food Science and Technology,2020,125:109247.

    13. [13]

      JAMWAL R,AMIT,KUMARI S,et al.Attenuated total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometrics for rapid detection of argemone oil adulteration in mustard oil[J].LWT-Food Science and Technology, 2020,120:108945.

    14. [14]

      ARSLAN F N,AKIN G,KARUK ELMAS N,et al.Rapid detection of authenticity and adulteration of cold pressed black cumin seed oil:A comparative study of ATR-FTIR spectroscopy and synchronous fluorescence with multivariate data analysis[J].Food Control,2019,98:323-332.

    15. [15]

      ZHAO H F,ZHAN Y L,XU Z,et al.The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration[J].Food Chemistry,2022,373:131471.

    16. [16]

      CASTRO R C,RIBEIRO D S M,SANTOS J L M,et al.Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants[J].Talanta,2021,230:122373.

    17. [17]

      ZHANG T,LIU Y Y,DAI Z P,et al.Quantitative detection of extra virgin olive oil adulteration,as opposed to peanut and soybean oil,employing LED-induced fluorescence spectroscopy[J].Sensors,2022,22(3):1227.

    18. [18]

      HUYAN Z Y,DING S X,LIU X L,et al.Authentication and adulteration detection of peanut oils of three flavor types using synchronous fluorescence spectroscopy[J].Analytical Methods,2018,10(26):3207-3214.

    19. [19]

      WANG S H,LAI G Y,LIN J Z,et al.Rapid detection of adulteration in extra virgin olive oil by low-field nuclear magnetic resonance combined with pattern recognition[J].Food Analytical Methods,2021,14(7):1322-1335.

    20. [20]

      WANG X R,HAN Y Z,LI Y X,et al.Detection of Qinghai-Tibet Plateau flaxseed oil adulteration based on fatty acid profiles and chemometrics[J].Food Control,2021,130:108332.

    21. [21]

      MANSUR A R,JEONG H R,LEE B H,et al.Comparative evaluation of triacylglycerols,fatty acids,and volatile organic compounds as markers for authenticating sesame oil[J].International Journal of Food Properties,2018,21(1):2509-2516.

    22. [22]

      侯颖烨,王志元,谢建军,等.元素分析-稳定同位素质谱法结合化学计量学鉴别橄榄油掺假[J].中国油脂,2023,48(6):73-78.

    23. [23]

      OZCAN-SINIR G.Detection of adulteration in extra virgin olive oil by selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics[J].Food Control,2020,118:107433.

    24. [24]

      CALVINI R,PIGANI L.Toward the development of combined artificial sensing systems for food quality evaluation:A review on the application of data fusion of electronic noses,electronic tongues and electronic eyes[J].Sensors,2022,22(2):577.

    25. [25]

      MIRHOSEINI-MOGHADDAM S M,YAMAGHANI M R,BAKHSHIPOUR A.Application of electronic nose and eye systems for detection of adulteration in olive oil based on chemometrics and optimization approaches[J].Journal of Universal Computer Science,2023,29(4):300-325.

    26. [26]

      CLEMENTE O,ROCÍO R,L. D G,et al.Comparing the potential of IR-spectroscopic techniques to gas chromatography coupled to ion mobility spectrometry for classifying virgin olive oil categories[J].Food Chemistry(X),2023,19:100738.

    27. [27]

      SHEU S C,WANG Y J,HUANG P C,et al.Authentication of olive oil in commercial products using specific,sensitive,and rapid loop-mediated isothermal amplification[J].Journal of Food Science and Technology,2023,60(6):1834-1840.

    28. [28]

      AZCARATE S M,RÍOS-REINA R,AMIGO J M,et al.Data handling in data fusion: Methodologies and applications[J].TrAC Trends in Analytical Chemistry,2021,143:116355.

    29. [29]

      SUN Z B,DAVIS J,GAO W.Estimating error covariance and correlation region in UV irradiance data fusion by combining TOMS-OMI and UVMRP ground observations[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(1):355-370.

    30. [30]

      MOROS J,JAVIER LASERNA J.Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies[J].Talanta,2015,134:627-639.

    31. [31]

      徐伟杰,武中臣,朱香平,等.基于光谱融合的火星表面相关矿物分类方法研究[J].光谱学与光谱分析,2018,38(6):1926.

    32. [32]

      王清亚,李福生,江晓宇,等.基于XRF和Vis-NIR光谱数据融合的土壤镉含量定量分析法[J].分析测试学报,2020,39(11):1327-1333.

    33. [33]

      CHANDRA S,CHAPMAN J,POWER A,et al.Origin and regionality of wines: The role of molecular spectroscopy[J].Food Analytical Methods,2017,10(12):3947-3955.

    34. [34]

      李艳坤,董汝南,张进,等.光谱数据解析中的变量筛选方法[J].光谱学与光谱分析,2021,41(11):3331-3338.

    35. [35]

      PEARSON K.On lines and planes of closest fit to systems of points in space[J].Philosophical Magazine,1901,2(11):559-572.

    36. [36]

      CENTNER V,MASSART D L,DE NOORD O E,et al.Elimination of uninformative variables for multivariate calibration[J].Analytical Chemistry,1996,68(21):3851-3858.

    37. [37]

      NØRGAARD L,SAUDLAND A,WAGNER J,et al.Interval partial least-squares regression (iPLS):A comparative chemometric study with an example from near-infrared spectroscopy[J].Applied Spectroscopy,2000,54(3):413-419.

    38. [38]

      LI H D,LIANG Y Z,XU Q S,et al.Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J].Analytica Chimica Acta,2009,648(1):77-84.

    39. [39]

      ARAÚJO M C U,SALDANHA T C B,GALVÃO R K H,et al.The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J].Chemometrics and Intelligent Laboratory Systems,2001,57(2):65-73.

    40. [40]

      METROPOLIS N,ROSENBLUTH A W,ROSENBLUTH M N,et al.Equation of state calculations by fast computing machines[J].The Journal of Chemical Physics,1953,21(6):1087-1092.

    41. [41]

      JIN Z,YANG J Y,HU Z S,et al.Face recognition based on the uncorrelated discriminant transformation[J].Pattern Recognition,2001,34(7):1405-1416.

    42. [42]

      GENG X J,LIANG Y, JIAO L M.Multi-frame decision fusion based on evidential association rule mining for target identification[J].Applied Soft Computing,2020,94:106460.

    43. [43]

      DANKOWSKA A.Data fusion of fluorescence and UV spectroscopies improves the detection of cocoa butter adulteration[J].European Journal of Lipid Science and Technology,2017,119(8):1156-1172.

    44. [44]

      LI Y,XIONG Y M,MIN S G.Data fusion strategy in quantitative analysis of spectroscopy relevant to olive oil adulteration[J].Vibrational Spectroscopy,2019,101:20-27.

    45. [45]

      SCHWOLOW S,GERHARDT N,ROHN S,et al.Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys-is it worth to go the extra Mile?[J].Analytical and Bioanalytical Chemistry,2019,411(23):6005-6019.

    46. [46]

      BURATTI S,MALEGORI C,BENEDETTI S,et al.E-nose,e-tongue and e-eye for edible olive oil characterization and shelf life assessment:A powerful data fusion approach[J].Talanta,2018,182:131-141.

    47. [47]

      TATA A,MASSARO A,DAMIANI T,et al.Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for LC-MS,GC-IMS and FGC-Enose techniques:The winning synergy of GC-IMS and FGC-Enose[J].Food Control,2022,133:108645.

    48. [48]

      张婧,单慧勇,杨仁杰,等.基于近-中红外相关谱融合判定掺伪芝麻油[J].光子学报,2019,48(6):62-68.

    49. [49]

      HU O,CHEN J,GAO P F,et al.Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods[J].Journal of the Science of Food and Agriculture,2019,99(5):2285-2291.

    50. [50]

      GU H Y,HUANG X Y,SUN Y H,et al.Intelligent evaluation of total polar compounds (TPC) content of frying oil based on fluorescence spectroscopy and low-field NMR[J].Food Chemistry,2021,342:128242.

    51. [51]

      LIU H,CHEN Y,SHI C,et al.FT-IR and Raman spectroscopy data fusion with chemometrics for simultaneous determination of chemical quality indices of edible oils during thermal oxidation[J].LWT-Food Science and Technology,2020,119:108906.

    52. [52]

      邱薇纶,周燕舞,石孟良.基于数据融合策略植物油光谱模式的识别[J].中国油脂,2023,48(7):62-66
      ,89.

    53. [53]

      OBISESAN K A,JIMÉNEZ-CARVELO A M,CUADROS-RODRIGUEZ L,et al.HPLC-UV and HPLC-CAD chromatographic data fusion for the authentication of the geographical origin of palm oil[J].Talanta,2017,170:413-418.

    54. [54]

      VERA D N,JIMÉNEZ-CARVELO A M,CUADROS-RODRÍGUEZ L,et al.Authentication of the geographical origin of extra-virgin olive oil of the Arbequina cultivar by chromatographic fingerprinting and chemometrics[J].Talanta,2019,203:194-202.

    55. [55]

      SRINATH K,KIRANMAYEE A H,BHANOT S,et al.Detection of palm oil adulteration in sunflower oil using ATR-MIR spectroscopy coupled with chemometric algorithms[J].MAPAN,2022,37(3):483-493.

    56. [56]

      UNCU O,OZEN B. A comparative study of mid-infrared, UV-visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils[J].Food Control,2019,105:209-218.

    57. [57]

      ARSLAN F N,AKIN G,KARUK ELMAS N,et al.Rapid detection of authenticity and adulteration of cold pressed black cumin seed oil:A comparative study of ATR-FTIR spectroscopy and synchronous fluorescence with multivariate data analysis[J].Food Control,2019,98:323-332.

    58. [58]

      FORT A,RUISÁNCHEZ I,CALLAO M P.Chemometric strategies for authenticating extra virgin olive oils from two geographically adjacent Catalan protected designations of origin[J].Microchemical Journal,2021,169:106611.

    59. [59]

      高冰,吴鹏飞,许晓栋,等.基于色谱和光谱数据融合的不同植物源食用油判别方法与模型[J].分析测试学报,2020,39(11):1398-1403.

    60. [60]

      MALÉCHAUX A,LAROUSSI-MEZGHANI S,LE DRÉAU Y,et al.Multiblock chemometrics for the discrimination of three extra virgin olive oil varieties[J].Food Chemistry,2020,309:125588.

    61. [61]

      JURADO-CAMPOS N,ARROYO-MANZANARES N,VIÑAS P,et al.Quality authentication of virgin olive oils using orthogonal techniques and chemometrics based on individual and high-level data fusion information[J].Talanta,2020,219:121260.

    62. [62]

      ZAREZADEH M R,ABOONAJMI M,GHASEMI-VARNAMKHASTI M.The effect of data fusion on improving the accuracy of olive oil quality measurement[J].Food Chemistry(X),2023,18:100622.

    63. [63]

      BLANDON-NARANJO L,ALANIZ R D,ZON M A,et al.Development of a voltammetric electronic tongue for the simultaneous determination of synthetic antioxidants in edible olive oils[J].Talanta,2023,261:124123.

    64. [64]

      ZHOU X,LI X Q,ZHAO B,et al.Discriminant analysis of vegetable oils by thermogravimetric-gas chromatography/mass spectrometry combined with data fusion and chemometrics without sample pretreatment[J].LWT-Food Science and Technology,2022,161:113403.

Article Metrics

Article views(591) PDF downloads(8) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return