JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 39 Issue 5
October 2024
Article Contents
WU Xiaodong, LIU Chang, LI Jun, et al. Characterizing flavoring uniformity in tobacco based on hyperspectral detection[J]. Journal of Light Industry, 2024, 39(5): 95-101. doi: 10.12187/2024.05.011
Citation: WU Xiaodong, LIU Chang, LI Jun, et al. Characterizing flavoring uniformity in tobacco based on hyperspectral detection[J]. Journal of Light Industry, 2024, 39(5): 95-101. doi: 10.12187/2024.05.011 shu

Characterizing flavoring uniformity in tobacco based on hyperspectral detection

  • Corresponding author: LI Qiang, 2084371151@qq.com
  • Received Date: 2023-09-01
    Accepted Date: 2023-10-25
    Available Online: 2024-10-15
  • To address the issues of complexity, low accuracy, high personnel requirements, and inability to adapt to the demand for large-scale real-time monitoring in the current detection methods for flavoring content and uniformity in tobacco, a characterization method for the uniformity of flavoring in tobacco based on hyperspectral detection had been developed. The method utilized a self-developed hyperspectral system to capture fluorescence hyperspectral images of tobacco before and after flavoring, and performed weighted unmixing on the fluorescence hyperspectral images. Based on the unmixing coefficients, a characterization index R for the content of flavoring applied to tobacco leaves was established, and the coefficient of variation (CV) of R was used to represent the uniformity of flavoring in the tobacco. Verification conducted on flavored tobacco leaves from actual production lines, it was found that the magnitude of R was positively correlated with the content of flavoring in the tobacco, and the CV could accurately determine the uniformity of flavoring in the tobacco. This method could be used for the detection and monitoring of flavoring quality of an known fragrance samples in the actual production process of tobacco.
  • 加载中
    1. [1]

      简著名,蒋鹏冲,陈亮,等.制丝加香加料防差错系统设计[J].设备管理与维修,2019(21):144-146.

    2. [2]

      许雄文,袁书豪,郑桥锋.加香加料设备精度异常原因分析及改进方法[J].设备管理与维修,2019(2):92.

    3. [3]

      黄津焕,叶伟华,林天勤.一种监控加香加料比例稳定性的控制方法[J].中国科技投资,2017(27):264.

    4. [4]

      宋旭东.烟草制丝工艺设备实时监测系统的研制[D].厦门:厦门大学,2019.

    5. [5]

      张崇崇.制丝加香过程数字化分析及预测[D].昆明:昆明理工大学,2021.

    6. [6]

      胡福.烟片加料过程数字化评价体系及加料效果预测研究[D].昆明:昆明理工大学,2019.

    7. [7]

      雷东锋,孙胜兵,王宗英.烟丝加香均匀性在线快速检测仪:201010148309.7[P].2013-01-02.

    8. [8]

      夏启东,何邦华,侯英,等.气相色谱质谱法测定6种加香目标物质的含量及对烟丝加香均匀性的评价[J].分析测试学报,2012,31(7):816-822.

    9. [9]

      廖惠云,张映,熊晓敏,等.基于标志物含量的变化表征卷烟制丝加香均匀性[J].烟草科技,2011(10):5-11.

    10. [10]

      李登科,张春涛,叶鸿宇,等.一种评价卷烟加香均匀性的方法:201810906833.2[P].2018-12-21.

    11. [11]

      汪显国,申晓锋,刘泽,等.基于主成分分析法的烟丝加香均匀性评价[J].中国烟草学报,2013,19(5):33-42.

    12. [12]

      赵华武,贺帆,李祖良,等.基于主成分分析法的烤烟香气品质评价模型构建[J].西北农业学报,2012,21(2):88-93.

    13. [13]

      黄曼艳,陈森林,陶红,等.烟叶中致香成分前处理与检测方法研究进展[J].食品安全质量检测学报,2018,9(9):2072-2079.

    14. [14]

      周旭锋.基于数字图像处理的烟叶加料均匀性检测系统的研究[D].南京:南京理工大学, 2009.

    15. [15]

      刘翠玲,朱锐,徐金阳,等.基于高光谱成像技术快速检测茶叶茶多酚含量[J].食品安全质量检测学报,2022,13(17):5504-5510.

    16. [16]

      陈泽珊.高光谱成像技术在食品品质无损检测中的应用探究[J].食品安全导刊,2022(26):149-151.

    17. [17]

      蓝金辉,邹金霖,郝彦爽,等.高光谱遥感影像混合像元分解研究进展[J].遥感学报,2018,22(1):13-27.

    18. [18]

      HEINZ D,CHANG C I,ALTHOUSE M L G.Fully constrained least-squares based linear unmixing[hyperspectral image classification[C]//IEEE 1999 International Geoscience and Remote Sensing Symposium.IGARSS'99(Cat.No.99CH36293).Hamburg:IEEE,1999:1401-1403.

    19. [19]

      袁德美,安军,陶宝.概率论与数理统计[M].北京:高等教育出版社,2016.

    20. [20]

      师素双,耿金鹏.配对样本t检验在玉米育种辐照实验中的应用[J].智慧农业导刊,2023,3(10):30-33.

Article Metrics

Article views(630) PDF downloads(25) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return