非奇异H-矩阵的新判据
New conditions for nonsingular H-matrix
-
摘要: 针对判别一个矩阵是否为非奇异H-矩阵的实用而简便的判定条件较少的问题,从矩阵本身元素的性质出发,通过构造正对角矩阵,综合利用不等式的放缩技巧和非奇异H-矩阵的充分必要条件,推广和改进了一些判定定理,进而扩大了非奇异H-矩阵的判定范围.数值算例表明,新判据比原有结果有更广的应用范围.
-
关键词:
- 非奇异H-矩阵 /
- α-对角占优矩阵 /
- 广义严格α-对角占优矩阵
Abstract: Aiming at the problem of fewer practical decision condition whether a matrix is nonsingular H-matrix, based on the properties of matrix element itself,by constructing positive diagonal matrix and comprehensive utilization of inequality techniques and sufficient and necessary conditions of nonsingular H-matrix,some of the judgement theorem were expanded and improved.And the scope of judging nonsingular matrices was also expanded.The numerical example showed that the new criterion had wide range of application than the original results. -
-
[1]
陈公宁.矩阵理论与应用[M].北京:科学出版社,2007:225-227.
-
[2]
范迎松,陆全,徐仲.非奇异H-矩阵的一组判定条件[J].高校应用数学学报,2011,26(4):474.
-
[3]
李敏,孙玉祥.非奇异H-矩阵的新判定准则[J].工程数学学报,2012,29(5):715.
-
[4]
Huang T Z,Li W,Lei G Y.Contributions to nonsingular H-matrices[J].ZAMM-Zeitschrift fur Angewandte Mathematik and Mechanik,2000,80(1):493.
-
[5]
Sun Y X.An improvement on a theorem by Ostrowski and its applications[J].Northeastern Mathematical Journal,1991,7(4):497.
-
[6]
侯进军,李斌.H-矩阵的一组新判定[J].应用数学学报,2009,31(2):266.
-
[7]
徐仲,陆全.判定广义严格对角占优矩阵的一组充分条件[J].工程数学学报,2001,18(3):11.
-
[8]
庹清.非奇异H-矩阵判定的新条件[J].工程数学学报,2008,25(4):749.
-
[9]
黄廷祝.非奇异H-矩阵的简捷判据[J].计算数学,1993(3):318.
-
[10]
Varge R S.On recurring throrems on diagonal dominance[J].Linear Algebra Appl,1976(13):1.
-
[11]
崔润卿,闫学华.非奇异H-矩阵的一组新判据[J].郑州轻工业学院学报:自然科学版,2013,28(3):98.
-
[12]
李敏,孙维娜,张雪.α-双对角占优矩阵的等价表征及应用[J].北华大学学报:自然科学版,2012,12(4):396.
-
[13]
宋岱才,赵晓颖.α-链严格对角占优矩阵的一个充要条件[J].辽宁石油化工大学学报,2011,31(3):81.
-
[14]
王再玉,赵鸣霖.广义α-对角占优矩阵与非奇异H-矩阵的判别[J].长春理工大学学报:自然科学版,2011(3):171.
-
[15]
秦建国,谢栋梁,王静娜.一类可以对角化的矩阵[J].郑州轻工业学院学报:自然科学版,2013,28(2):106.
-
[1]
计量
- PDF下载量: 16
- 文章访问数: 757
- 引证文献数: 0