JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于DNA链置换和亚分子瓦的可控4臂DNA分子瓦自组装

姚莉娜 赵涛涛 李蒙蒙 崔光照 王延峰

姚莉娜, 赵涛涛, 李蒙蒙, 等. 基于DNA链置换和亚分子瓦的可控4臂DNA分子瓦自组装[J]. 轻工学报, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019
引用本文: 姚莉娜, 赵涛涛, 李蒙蒙, 等. 基于DNA链置换和亚分子瓦的可控4臂DNA分子瓦自组装[J]. 轻工学报, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019
YAO Li-na, ZHAO Tao-tao, LI Meng-meng, et al. Controllable 4-arm DNA tile self-assemblybased on DNA strand displacement and sub-tile[J]. Journal of Light Industry, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019
Citation: YAO Li-na, ZHAO Tao-tao, LI Meng-meng, et al. Controllable 4-arm DNA tile self-assemblybased on DNA strand displacement and sub-tile[J]. Journal of Light Industry, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019

基于DNA链置换和亚分子瓦的可控4臂DNA分子瓦自组装

  • 基金项目: 国家自然科学基金项目(61472372,61272022,60773122,61070238)
    河南省科技创新人才计划(杰出人才)项目(124200510017)
    郑州市科技人才队伍建设计划(科技领军人才)项目(131PLJRC648)

  • 中图分类号: TB383;TP309;TP18

Controllable 4-arm DNA tile self-assemblybased on DNA strand displacement and sub-tile

  • Received Date: 2014-09-24
    Available Online: 2014-11-15

    CLC number: TB383;TP309;TP18

  • 摘要: 提出了用DNA链置换电路控制亚分子瓦(sub-tile)自组装4臂DNA分子瓦的模型,在亚分子瓦原型基础上设计了亚分子瓦的分解结构,通过修改链置换反应中"小支点"的反应速率,观察"小支点"反应速率对这种可控的DNA自组装时间响应的影响.Visual DSD仿真结果表明,通过提高控制链与其他反应链的比值及"小支点"的反应速率,可以加快DNA亚分子瓦自组装的反应速度,同时也证实了在室温下实现可控的DNA亚分子瓦自组装的可能性.
    1. [1]

      Zhang D Y,Hariadi R F,Winfree E,et al.Integrating DNA strand-displacement circuitry with DNA tile self-assembly[J].Nature Communication,2013(4):1965.

    2. [2]

      Fu T J,Seeman N C.DNA double-crossover molecules[J].Biochemistry,1993,32:3211.

    3. [3]

      LaBean T H,Yan H,Seeman N C,et al.Construction,analysis,ligation and self-assembly of DNA triple crossover complexes[J].Journal of American Chemistry Society,2000,122:1848.

    4. [4]

      Shen Z,Yan H,Seeman N C,et al.Paranemic crossover DNA:a generalized holliday structure with applications in nanotechnology[J].Journal American Chemistry Society,2004,126:1666.

    5. [5]

      Wang X,Seeman N C.Assembly and characterization of 8-arm and 12-arm DNA branched junctions[J].Journal American Chemistry Society,2007,129:8169.

    6. [6]

      Rothemund P W.Assembly and characterization of 8-arm and 12-arm DNA branched junctions[J].Nature,2006,440:297.

    7. [7]

      Wei B,Dai M J,Yin P.Complex shapes self-assembledfrom single-stranded DNA tiles[J].Nature,2012,485:623.

    8. [8]

      Shi X L,Lu W,Wang Z Y,et al.Programmable DNA tile self-assembly using a hierarchical sub-tile strategy[J].Nanotechnology,2014,1038:0957.

    9. [9]

      Frezza B M,Cockroft S L,Ghadiri M R.Modular multi-level circuits from immobilized DNA-based logic gates[J].Journal American Chemistry Society,2007,129:14875.

    10. [10]

      Qian L L,Winfree E.A simple DNA gate motif for synthesizing large-scale circuits[J].Journal of the Royal Society Interface,2011,70:5347.

    11. [11]

      Li W,Yang Y,Yan H,et al.Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement[J].American Chemical Society Nano Letters,2013,13:2980.

    12. [12]

      Zhu J B,Zhang L B,Wang E K,et al.Four-way junction-driven DNA strand displacement and its application in building majority logic circuit[J].American Chemical Society Nano,2013(7):10211.

    13. [13]

      Wang Y F,Wei D H,Cui G Z,et al.Arithmetic computation using self-assembly of DNA tiles:Subtraction in the method of complements[J].Journal of Computational and Theoretical Nanoscience,2013(10):306.

    14. [14]

      Seelig G,Soloveichik D,Zhang D Y,et al.Enzyme-free nucleic acid logic circuits[J].Science,2006,314:1585.

    15. [15]

      Cardelli L.Two-domain DNA strand displacement[J].Mathematical Structures in Computer Science,2013,23:247.

    16. [16]

      Green S J,Lubrich D,Turberfield A J.DNA hairpins:Fuel for autonomous DNA devices[J].Biophysical Journal,2006,91:2966.

    17. [17]

      Dirks R M,Pierce N A.A partition function algorithm for nucleic acid secondary structure including pseudoknots[J].Journal of Computional Chemistry,2003,24:1664.

    18. [18]

      Zhang D Y,Winfree E.Control of DNA strand displacement kinetics using toehold exchange[J].Journal American Chemistry Society,2009,131(47):17303.

    19. [19]

      Muscat R A,Bath J,Turberfield A J.A programmable DNA molecular robot[J].Nano Letters,2011(11):982.

  • 加载中
计量
  • PDF下载量:  66
  • 文章访问数:  897
  • 引证文献数: 0
文章相关
  • 收稿日期:  2014-09-24
  • 刊出日期:  2014-11-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
姚莉娜, 赵涛涛, 李蒙蒙, 等. 基于DNA链置换和亚分子瓦的可控4臂DNA分子瓦自组装[J]. 轻工学报, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019
引用本文: 姚莉娜, 赵涛涛, 李蒙蒙, 等. 基于DNA链置换和亚分子瓦的可控4臂DNA分子瓦自组装[J]. 轻工学报, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019
YAO Li-na, ZHAO Tao-tao, LI Meng-meng, et al. Controllable 4-arm DNA tile self-assemblybased on DNA strand displacement and sub-tile[J]. Journal of Light Industry, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019
Citation: YAO Li-na, ZHAO Tao-tao, LI Meng-meng, et al. Controllable 4-arm DNA tile self-assemblybased on DNA strand displacement and sub-tile[J]. Journal of Light Industry, 2014, 29(6): 86-91. doi: 10.3969/j.issn.2095-476X.2014.06.019

基于DNA链置换和亚分子瓦的可控4臂DNA分子瓦自组装

  • 郑州轻工业学院 电气信息工程学院, 河南 郑州 450002
基金项目:  国家自然科学基金项目(61472372,61272022,60773122,61070238)河南省科技创新人才计划(杰出人才)项目(124200510017)郑州市科技人才队伍建设计划(科技领军人才)项目(131PLJRC648)

摘要: 提出了用DNA链置换电路控制亚分子瓦(sub-tile)自组装4臂DNA分子瓦的模型,在亚分子瓦原型基础上设计了亚分子瓦的分解结构,通过修改链置换反应中"小支点"的反应速率,观察"小支点"反应速率对这种可控的DNA自组装时间响应的影响.Visual DSD仿真结果表明,通过提高控制链与其他反应链的比值及"小支点"的反应速率,可以加快DNA亚分子瓦自组装的反应速度,同时也证实了在室温下实现可控的DNA亚分子瓦自组装的可能性.

English Abstract

参考文献 (19)

目录

/

返回文章