JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 30 Issue 3-4
September 2015
Article Contents
HUANG Min and WANG Jia-li. Cloud classification research based on over complete dictionary sparse representation[J]. Journal of Light Industry, 2015, 30(3-4): 82-85. doi: 10.3969/j.issn.2095-476X.2015.3/4.018
Citation: HUANG Min and WANG Jia-li. Cloud classification research based on over complete dictionary sparse representation[J]. Journal of Light Industry, 2015, 30(3-4): 82-85. doi: 10.3969/j.issn.2095-476X.2015.3/4.018 shu

Cloud classification research based on over complete dictionary sparse representation

  • Received Date: 2014-04-28
    Available Online: 2015-09-15
  • Aimed at the problem that automatic identification method for the cloud categories was less at present, a new method of cloud classification based on sparse representation of overcomplete dictionary was proposed. The method used different cloud types samples to establish an adaptive overcomplete dictionary, extracted dictionary features and designed sparse classifier to determine the type of cloud.The simulation analysis results showed that the classification accuracy of Ca,Cs&Cd,As&Ac,Ns&Cu,Cb were 100%, 63.5%, 90.3%, 94.1%, 98.2%, respectively.The overall classification accuracy was 89.2%. The classification accuracy was higher than the support vector machine classifier and the traditional sparse representation classifier.
  • 加载中
    1. [1]

      Dai D, Yang W.Satellite image classification via two-layer sparse coding with biased image representation[J].IEEE Geoscience and Remote Sensing Letters, 2011, 8(1):173.

    2. [2]

      Zhang L, Yang M, Feng X C.Sparse representation or collaborative representation:Which helps face recognition?[C]//Proceedings of 2011 IEEE International Conference on Computer Vision,Piscataway:IEEE,2011:471.

    3. [3]

      Naeger A R, Christopher S A, Ferrare R, et al.A new technique using infrared satellite measurements to improve the accuracy of the CALIPSO cloud-aerosol discrimination method[J].Geoscience and Remote Sensing,2013,51(1):642.

    4. [4]

      Han D, Yan W, Ren J Q,et al.Cloud type classification algorithm for CloudSatsatellite based on support vector machine[J].Atmospheric Science,2011(34):583.

    5. [5]

      周雪珺,杨晓非,姚行中.遥感图像的云分类和云检测技术研究[J].图学学报,2014,35(5):768.

    6. [6]

      金炜,符冉迪,范亚会,等.采用多模糊支持向量机决策融合的积雨云检测[J].光学精密工程,2014,22(12):3427.

    7. [7]

      Wright J, Yu L, Mairal J,et al.Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031.

    8. [8]

      Sun X P, Wang J, She M,et al.Scale invariant texture classification via sparse representation[J].Neurocomputing,2013(122):338.

    9. [9]

      Sheng G F, Yang W, Yu L, et al.Cluster structured sparse representation for high resolution satellite image classification[C]//Proceedings of 2012 IEEE 11th International Conference on Signal Processing (ICSP),Piscataway:IEEE,2012:693.

    10. [10]

      Jaiswal N, Kishtawal C M.Automatic determination of center of tropical cyclone in satellite-generated IR images[J].Geoscience and Remote Sensing,2011,8(3):460.

    11. [11]

      尹雯,李元祥,周则明,等.基于稀疏表示的遥感图像融合方法[J].光学学报,2013,33(4):267.

Article Metrics

Article views(871) PDF downloads(22) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return