JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

逐段决定复合泊松风险模型的最优分红与注资策略

岳毅蒙 王欣 赵锐

岳毅蒙, 王欣, 赵锐. 逐段决定复合泊松风险模型的最优分红与注资策略[J]. 轻工学报, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033
引用本文: 岳毅蒙, 王欣, 赵锐. 逐段决定复合泊松风险模型的最优分红与注资策略[J]. 轻工学报, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033
YUE Yi-meng, WANG Xin and ZHAO Rui. Optimal dividend and capital injection strategies in the piecewise-deterministic compound Poisson risk model[J]. Journal of Light Industry, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033
Citation: YUE Yi-meng, WANG Xin and ZHAO Rui. Optimal dividend and capital injection strategies in the piecewise-deterministic compound Poisson risk model[J]. Journal of Light Industry, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033

逐段决定复合泊松风险模型的最优分红与注资策略

  • 基金项目: 陕西省自然科学基础研究计划项目(2013JM1023)
    商洛学院教改项目(14JYJX103,15JYJX118)
    商洛学院科研项目(13SKY013)
    陕西省教育厅科研项目(2013JK0605)

  • 中图分类号: O211.6;F840

Optimal dividend and capital injection strategies in the piecewise-deterministic compound Poisson risk model

  • Received Date: 2015-01-14
    Available Online: 2015-09-15

    CLC number: O211.6;F840

  • 摘要: 研究了逐段决定复合泊松风险模型的最优分红和注资问题,以股东的破产时刻折现分红减去惩罚折现注资的差的期望值最大化为目标,通过求解相应的HJB方程,得到了对应的值函数,进而得出最优分红和注资策略是Threshold策略的结论,使风险模型更加符合实际,更具现实意义.
    1. [1]

      Cai J,Feng R,Willmot G E.On the expectation of total discounted operating costs up to default and its applications[J].Advances in Applied Probability,2009(41):495.

    2. [2]

      董继国.逐段决定复合泊松风险模型的最优控制问题[D].石家庄:河北师范大学,2014.

    3. [3]

      Schmidli H.Optimal dividend strategies in a Cramer-Lundberg model with capital injections[J].Insurance:Mathematcs and Economics,2008(5):1.

    4. [4]

      Scheer N,Schmidli H.Optimal dividend strategies in a Cramer-Lundberg model with capital injections and administration costs[J].European Actuarial Journal,2011(1):57.

    5. [5]

      Akyildirim E,Güney I E,Rochet J C,et al.Optimal dividend policy with random interest rates[J].Journal of Mathematical Economics,2014,51:93.

    6. [6]

      Hunting M,Paulsen J.Optimal dividend policies with transaction costs for a class of jump-diffusion processes[J].Finance and Stochastics,2013,17(1):73.

    7. [7]

      Zhu J.Optimal dividend control for a generalized risk model with investment incomes and debit interest[J].Scandinavian Actuarial Journal,2013,2013(2):140.

    8. [8]

      Eisenberg J,Schmidli H.Optimal control of capital injections by reinsurance in a diffusion approximation[J].Blätter der DGVFM,2009,30(1):1.

    9. [9]

      Eisenberg J,Schmidli H.Minimising expected discounted capital injections by reinsurance in a classical risk model[J].Scandinavian Actuarial Journal,2011,2011(3):155.

    10. [10]

      Albrecher H,Thonhauser S.Optimality results for dividend problems in insurance[J].Racsam Rev R Acad Cien Serie A Math,2009,103(2):295.

    11. [11]

      Shen Y,Yin C.Optimal dividend problem for a compound poisson risk model[J].Applied Mathematics,2014,5(10):1496.

    12. [12]

      Paulsen J.Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs[J].Siam Journal on Control and Optimization,2008,47(5):2201.

    13. [13]

      Zhou M,Yuen K C.Portfolio selection by minimizing the present value of capital injection costs[J].Astin Bulletin,2015,45(1):207.

    14. [14]

      Fleming W,Soner H.Controlled Markov Processes and Viscosity Solutions[M].Newyork:Springer-Verlag,1993.

    1. [1]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 0(0): -.

    2. [2]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 39(5): 9-17. doi: 10.12187/2024.05.002

    3. [3]

      张伟伟姬远鹏元春波王君婷齐晓任张卫正李萌饶智 . 基于改进Mask R-CNN模型的粘连烟丝识别方法. 轻工学报, 2024, 39(5): 78-85. doi: 10.12187/2024.05.009

    4. [4]

      费致根鲁豪宋晓晓赵鑫昌郭兴肖艳秋 . 基于改进ResNet网络的烟丝输送带洁净度分类模型. 轻工学报, 2024, 39(5): 71-77. doi: 10.12187/2024.05.008

    5. [5]

      张建栋杨忠泮吴恋恋徐大勇朱萍张雯晶堵劲松 . 基于高光谱成像及机器学习的烟叶糖料液施加量判别模型. 轻工学报, 2024, 39(5): 86-94. doi: 10.12187/2024.05.010

  • 加载中
计量
  • PDF下载量:  32
  • 文章访问数:  1023
  • 引证文献数: 0
文章相关
  • 收稿日期:  2015-01-14
  • 刊出日期:  2015-09-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
岳毅蒙, 王欣, 赵锐. 逐段决定复合泊松风险模型的最优分红与注资策略[J]. 轻工学报, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033
引用本文: 岳毅蒙, 王欣, 赵锐. 逐段决定复合泊松风险模型的最优分红与注资策略[J]. 轻工学报, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033
YUE Yi-meng, WANG Xin and ZHAO Rui. Optimal dividend and capital injection strategies in the piecewise-deterministic compound Poisson risk model[J]. Journal of Light Industry, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033
Citation: YUE Yi-meng, WANG Xin and ZHAO Rui. Optimal dividend and capital injection strategies in the piecewise-deterministic compound Poisson risk model[J]. Journal of Light Industry, 2015, 30(3-4): 157-160. doi: 10.3969/j.issn.2095-476X.2015.3/4.033

逐段决定复合泊松风险模型的最优分红与注资策略

  • 商洛学院 数学与计算机应用学院, 陕西 商洛 726000;
  • 商洛学院 经济与管理学院, 陕西 商洛 726000
基金项目:  陕西省自然科学基础研究计划项目(2013JM1023)商洛学院教改项目(14JYJX103,15JYJX118)商洛学院科研项目(13SKY013)陕西省教育厅科研项目(2013JK0605)

摘要: 研究了逐段决定复合泊松风险模型的最优分红和注资问题,以股东的破产时刻折现分红减去惩罚折现注资的差的期望值最大化为目标,通过求解相应的HJB方程,得到了对应的值函数,进而得出最优分红和注资策略是Threshold策略的结论,使风险模型更加符合实际,更具现实意义.

English Abstract

参考文献 (14) 相关文章 (5)

目录

/

返回文章