一种基于指数降维的监督型稀疏保持典型相关分析算法
An improved supervised sparsity preserving CCA algorithm based on exponential dimensionality reduction
-
摘要: 提出一种基于指数降维的监督型稀疏保持典型相关分析算法.通过将样本的类别信息与样本特征相融合,克服以往引入监督信息导致重建误差增大的缺陷,同时实现类内相关的最大化与类间相关的最小化;针对传统算法处理稀疏信号的高维小样本问题的瓶颈,改进算法对总体散布矩阵做指数化的处理,既保留有效信息,又将总体散布矩阵非奇异化,克服PCA预处理散布矩阵导致有效信息流失的缺陷.依据ORL,Yale,AR和FERET人脸数据库而进行的仿真实验表明,该算法比其他的典型相关分析方法具有更好的识别效果.
-
关键词:
- 典型相关分析(CCA) /
- 稀疏保持(SPP) /
- 指数降维 /
- 特征提取 /
- 人脸识别
Abstract: An improved supervised sparsity preserving canonical correlation analysis algorithm based on exponential dimensionality reduction was proposed. The problem that the fitting error increased while adding supervised information to the SPCCA was solved by the fusion of the class label information and sample feature. The local manifold structure of the data was realized at the same time. Aimed at the problem of traditional algorithm in dealing with small sample of high-dimensiona sparse signal, index scattering matrix was used to retain effective information while building the non-singular scattering matrix. It overcame the default of effective information losses while using PCA to extract principal features of the scattering matrix.The experimental results on ORL, Yale, AR and FERET face databases showed that the proposed algorithm was better than related canonical correlation analysis methods in recognition effect. -
-
[1]
Sun Q S,Zeng S G,Liu Y,et al.A new method of feature fusion and its application in image recognition[J].Pattern Recognition,2005,38(12):2437.
-
[2]
Kim T K,Cipolla R.Canonical correlation analysis of video volume tensors for action categorization and detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(8):1415.
-
[3]
Correa N M,Eichele T,Adali T,et al.Mult-set canonical correlation analysis for the fusion of concurrent single trial EPR and fuctional MRI[J].Neurolmage,2010,50(4):1438.
-
[4]
孙权森,曾生根,王平安,等.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524.
-
[5]
Zheng W M,Zhou X Y,Zou C R,et al.Facial expression recognition using kernel canonical correlation analysis[J].IEEE Transactions on Neural Networks,2006,17(1):233.
-
[6]
Sun T K,Chen S C,Yang J Y,et al.A novel method of combined feature extraction for recognition[C]//Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,Piscataway:IEEE,2008:1043.
-
[7]
Sun Q S,Liu Z D,P.A.Heng P A,et al.A theorem on the generalized canonicalprojective vectors[J].Pattern Recognition,2005,38(3):449.
-
[8]
洪泉,陈松灿,倪雪蕾.子模式典型相关分析及其在人脸识別中的应用[J].自动化学报,2008,34(1):21.
-
[9]
彭岩,张道强.半监督典型相关分析算法[J].软件学报,2008,19(11):2822.
-
[10]
Sun T K,Chen S C.Locality preserving CCA with applications to data visualization and pose estimation[J].Image and Vision Computing,2007,25(5):531.
-
[11]
侯书东,孙权森.稀疏保持典型相关分析及在特征融合中的应用[J].自动化学报,2012,38(4):659.
-
[12]
侯书东.基于相关投影分析的特征提取研究及在图像识别中的应用[D].南京:南京理工大学,2012.
-
[13]
相文楠,赵建立.监督型稀疏保持投影[J].计算机工程与应用,2011,47(29):186.
-
[14]
王静.基于稀疏表达的人脸识别算法研究[D].大连:大连理工大学,2011.
-
[15]
Wang S J,Yan S C,Yang J,et al.A General Exponential Framework for Dimensionality Reduction[J].IEEE Transaction on Image Processing,2014,23(2):920.
-
[16]
Barker M,Rayens W.Partial least squares for discrimination[J].Journal of Chemometrics,2003,17(3):166.
-
[17]
Franklin J.The Elements of Statistical Learning:data mining,inference and prediction[J].The Mathematical Intelligencer,2005,27(2):83.
-
[18]
Horikawa Y.Use of autocorrelation kernels in kernel canonical correlation analysis for texture classification[J].Lecture Notes in Computer Science,2004,3316:1235.
-
[19]
Johansson B.On classification:simultaneously reducing dimensionality and finding automatic representation using canonical correlation[R].[s.l]:[s.n],2001.
-
[20]
Lee Y,Lin Y,Wahba G.Multicategory support vector machines,theory and application to the classification of microarray data and satellite radiance data[J].Journal of the American Statistical Association,2004,99:67.
-
[21]
An S J,Liu W Q,Venkatesh S.Face recognition using kernel ridge regression[C]//IEEE Conference on Computer Vision and Pattern Recognition,Piscataway:IEEE,2007:1-7.
-
[22]
张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1999.
-
[1]
计量
- PDF下载量: 46
- 文章访问数: 777
- 引证文献数: 0