JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

一类五维线性神经网络的复杂动力学行为研究

刘娜 周琼 孙君曼

刘娜, 周琼, 孙君曼. 一类五维线性神经网络的复杂动力学行为研究[J]. 轻工学报, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027
引用本文: 刘娜, 周琼, 孙君曼. 一类五维线性神经网络的复杂动力学行为研究[J]. 轻工学报, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027
LIU Na, ZHOU Qiong and SUN Jun-man. Research on the complex dynamical behavior for a 5-dimensional linear neural network[J]. Journal of Light Industry, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027
Citation: LIU Na, ZHOU Qiong and SUN Jun-man. Research on the complex dynamical behavior for a 5-dimensional linear neural network[J]. Journal of Light Industry, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027

一类五维线性神经网络的复杂动力学行为研究

  • 基金项目: 郑州轻工业学院博士科研基金项目(2014BSJJ047)
    河南省高等学校重点科研项目(15A120022)
    河南省科技厅科技攻关项目(122102210071)

  • 中图分类号: O415.5;TP13

Research on the complex dynamical behavior for a 5-dimensional linear neural network

  • Received Date: 2015-06-05
    Available Online: 2015-11-15

    CLC number: O415.5;TP13

  • 摘要: 针对一类五维线性神经网络模型,通过引入一个保证系统一致有界的控制器,并研究该被控系统相空间体积元的变化率、Lyapunov指数,以及与耗散度之间的关系,得到系统状态的判断依据,即当参数不同时,系统分别为耗散混沌系统、保守系统和不稳定系统.仿真结果表明:改变系统参数值,系统随之呈现复杂动力学行为;系统参数满足一定条件时,被控系统进入超混沌状态.
    1. [1]

      Wu C H,Zhang Y B,Yang N N.Analysis of a novel four-wing hyperchaotic system from pseudo to real and circuit experimental research[C]//Information Science,Electronics and Electrical Engineering(ISEEE),Sapporo:IEEE,2014:1138-1142.

    2. [2]

      Hammami S.Hybrid synchronization of discrete-time hyperchaotic systems based on aggregation techniques for image encryption[C]//Sciences and Techniques of Automatic Control and Computer Engineering(STA),Sousse:IEEE,,2013,325-330.

    3. [3]

      Abooee A,Jahed-Motlagh M R.A new hyperchaotic secure communication scheme and its circuitry realization[C]//Electrical Engineering(ICEE),Iranian:IEEE,2014:1295-1300.

    4. [4]

      Hammami S.Using discrete-time hyperchaotic-based asymmetric encryption and decryption keys for secure signal transmission[C]//Communication Systems,Networks & Digital Signal Processing(CSNDSP),Manchester:IEEE,2014:1054-1059.

    5. [5]

      Said Sadoudi,Camel Tanougast,Mohamed Salah Azzaz,et al.Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission[J].EURASIP Journal on Image and Video Processing,2013(1):43.

    6. [6]

      Rossler O E.An equation for hyperchaos[J].Phys Lett A,1979,71:155.

    7. [7]

      Matsumoto T,Chua L O,Kobayashi K.Hyperchaos:laboratory experiment and numerical confirmation[J].IEEE Trans Cite Syst Ⅰ,1986,33:1143.

    8. [8]

      Qi G,Chen G,M A van Wyk,et al.A four-wing chaotic attractor generated from a new 3-D quadratic chaotic system[J].Chaos,Solitons and Fractals,2008,38:705.

    9. [9]

      Cang S,Qi G.A four-wing-hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system[J].Nonlinear Dynamics,2010,46(4):263.

    10. [10]

      Nikolov S,Clodong S.Occurrence of regular chaotic and hyperchaos behavior in a family of modified Rossler hyperchaotic systems[J].Chaos,Solitons and Fractals,2004,22:407.

    11. [11]

      刘扬正.超混沌Lü 系统的电路实现[J].物理学报,2008,57:1439.

    12. [12]

      Shen C W,Yu S M,Lü J H,et al.Generating hyperchaotic systems with multiple positive Lyapunov exponents[C]//Control Conference(ASCC),Istanbul:IEEE,2013:1-5.

    13. [13]

      Shen C W,Yu S M,Lü J H.Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model[J].IEEE Trans Circ Syst Ⅰ,2014,61:2380.

    14. [14]

      Shen C W,Yu S M,Lü J H.A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation[J].IEEE Trans Circ Syst Ⅰ,2014,61:854.

    1. [1]

      卢晓波徐海朱俊召张宇谭健高冠男胡军华林龙 . 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报, 2024, 0(0): -.

    2. [2]

      费致根鲁豪宋晓晓赵鑫昌郭兴肖艳秋 . 基于改进ResNet网络的烟丝输送带洁净度分类模型. 轻工学报, 2024, 39(5): 71-77. doi: 10.12187/2024.05.008

  • 加载中
计量
  • PDF下载量:  31
  • 文章访问数:  1022
  • 引证文献数: 0
文章相关
  • 收稿日期:  2015-06-05
  • 刊出日期:  2015-11-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
刘娜, 周琼, 孙君曼. 一类五维线性神经网络的复杂动力学行为研究[J]. 轻工学报, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027
引用本文: 刘娜, 周琼, 孙君曼. 一类五维线性神经网络的复杂动力学行为研究[J]. 轻工学报, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027
LIU Na, ZHOU Qiong and SUN Jun-man. Research on the complex dynamical behavior for a 5-dimensional linear neural network[J]. Journal of Light Industry, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027
Citation: LIU Na, ZHOU Qiong and SUN Jun-man. Research on the complex dynamical behavior for a 5-dimensional linear neural network[J]. Journal of Light Industry, 2015, 30(5-6): 129-133. doi: 10.3969/j.issn.2095-476X.2015.5/6.027

一类五维线性神经网络的复杂动力学行为研究

  • 郑州轻工业学院 电气信息工程学院, 河南 郑州 450002
基金项目:  郑州轻工业学院博士科研基金项目(2014BSJJ047)河南省高等学校重点科研项目(15A120022)河南省科技厅科技攻关项目(122102210071)

摘要: 针对一类五维线性神经网络模型,通过引入一个保证系统一致有界的控制器,并研究该被控系统相空间体积元的变化率、Lyapunov指数,以及与耗散度之间的关系,得到系统状态的判断依据,即当参数不同时,系统分别为耗散混沌系统、保守系统和不稳定系统.仿真结果表明:改变系统参数值,系统随之呈现复杂动力学行为;系统参数满足一定条件时,被控系统进入超混沌状态.

English Abstract

参考文献 (14) 相关文章 (2)

目录

/

返回文章