JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于集成学习和基因本体标注库的细胞凋亡蛋白亚细胞位置预测

王晓 李辉 翟云清

王晓, 李辉, 翟云清. 基于集成学习和基因本体标注库的细胞凋亡蛋白亚细胞位置预测[J]. 轻工学报, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014
引用本文: 王晓, 李辉, 翟云清. 基于集成学习和基因本体标注库的细胞凋亡蛋白亚细胞位置预测[J]. 轻工学报, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014
WANG Xiao, LI Hui and ZHAI Yun-qing. Predicting subcellular localization of apoptosis protein based on ensemble learning and Gene Ontology annotation database[J]. Journal of Light Industry, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014
Citation: WANG Xiao, LI Hui and ZHAI Yun-qing. Predicting subcellular localization of apoptosis protein based on ensemble learning and Gene Ontology annotation database[J]. Journal of Light Industry, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014

基于集成学习和基因本体标注库的细胞凋亡蛋白亚细胞位置预测

  • 基金项目: 国家自然科学基金项目(61402422);河南省教育厅科学技术研究重点项目(14A520063);郑州轻工业学院博士科研基金资助项目(2013BSJJ082)

  • 中图分类号: TP273

Predicting subcellular localization of apoptosis protein based on ensemble learning and Gene Ontology annotation database

  • Received Date: 2016-03-20
    Available Online: 2016-07-15

    CLC number: TP273

  • 摘要: 针对目前凋亡蛋白的亚细胞定位预测精度不高的问题,提出了基于集成学习和基因本体(GO)标注库的细胞凋亡蛋白亚细胞位置预测方法.该方法采用凋亡蛋白及其同源蛋白的GO特征,结合两层集成策略,预测凋亡蛋白的亚细胞位置.在第一层,依据不同同源蛋白个数生成多个特征向量集合,选取距离权重K近邻分类器作为个体分类器,训练多个子预测模型,并以多数投票的方式集成.在第二层,将第一层的集成模型作为子预测模型,以多数投票的方式集成不同近邻个数预测模型.Jackknife检验结果表明:该方法在CL317凋亡蛋白数据集上预测准确率达到96.2%,优于其他方法;此外,还有效降低了数据不均衡带来的影响.
    1. [1]

      EVAN G,LITTLEWOOD T.A matter of life and cell death[J].Science,1998,281(5381):1317.

    2. [2]

      REED J C,PATERNOSTRO G.Postmitochondrial regulation of apoptosis during heart failure[J].Proc Natl Acad Sci USA,1999,96(14):7614.

    3. [3]

      JACOBSON M D,WEIL M,RAFF M C.Programmed cell death in animal development[J].Cell,1997,88(3):347.

    4. [4]

      SCHULZ J B,WELLER M,MOSKOWITZ M A.Caspases as treatment targets in stroke and neurodegenerative diseases[J].Annals of Neurology,1999,45(4):421.

    5. [5]

      SUZUKI M,YOULE R J.Structure of Bax:Coregulation of dimer formation and intracellular localization[J].Cell,2000,103(4):645.

    6. [6]

      张松,黄波,夏学峰,等.蛋白质亚细胞定位的生物信息学研究[J].生物化学与生物物理进展,2007(6):573.

    7. [7]

      ZHOU G P,Doctor K.Subcellular location prediction of apoptosis proteins[J].Proteins:Structure,Function and Genetics,2003,50(1):44.

    8. [8]

      BULASHEVSKA A,EILS R.Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains[J].BMC Bioinformatics,2006,7(1):298.

    9. [9]

      ZHANG Z H,WANG Z H,ZHANG Z R,et al.A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine[J].FEBS Letters,2006,580(26):6169.

    10. [10]

      CHEN Y L,LI Q Z.Prediction of the subcellular location of apoptosis proteins[J].Journal of Theoretical Biology,2007,245(4):775.

    11. [11]

      CHEN Y L,ZHONG Q Z.Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition[J].Journal of Theoretical Biology,2007,248(2):377.

    12. [12]

      DING Y,ZHANG T.Using Chou's pseudo amino acid composition to predict subcellular localization of apoptosis proteins:an approach with immune genetic algorithm-based ensemble classifier[J].Pattern Recognition Letters,2008,29(13):1887.

    13. [13]

      ZHANG L,LIAO B,LI D,et al.A novel representation for apoptosis protein subcellular localization prediction using support vector machine[J].Journal of Theoretical Biology,2009,259(2):361.

    14. [14]

      QIU J,LUO S,HUANG J,et al.Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine[J].Amino Acids,2010,38(4):1201.

    15. [15]

      LIU T G,ZHENG X Q,WANG J,et al.Prediction of subcellular location of apoptosis proteins using pseudo amino acid composition:an approach from auto covariance transformation[J].Protein&Peptide Letters,2010,17(10):1263.

    16. [16]

      LIN H,WANG H,DING H,et al.Prediction of subcellular localization of apoptosis protein using Chou's pseudo amino acid composition[J].Acta Biotheoretica,2009,57(3):321.

    17. [17]

      GU Q,DING Y,JIANG X,et al.Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection[J].Amino Acids,2010,38(4):975.

    18. [18]

      YU X,ZHENG X,LIU T,et al.Predicting subcellular location of apoptosis proteins with pseudo amino acid composition:approach from amino acid substitution matrix and auto covariance transformation[J].Amino Acids,2012,42(5):1619.

    19. [19]

      SARAVANAN V,LAKSHMI P T V.APSLAP:an adaptive boosting technique for predicting subcellular localization of apoptosis protein[J].Acta Biotheoretica,2013,61(4):481.

    20. [20]

      LIU T,TAO P,LI X,et al.Prediction of subcellular location of apoptosis proteins combining tri-gram encoding based on PSSM and recursive feature elimination[J].Journal of Theoretical Biology,2015,366:8.

    21. [21]

      HARRIS M A,CLARK J,IRELAND A,et al.The Gene Ontology (GO) database and informatics resource[J].Nucleic Acids Research,2004,32(Database issue):D258.

    22. [22]

      CAMON E,MAGRANE M,BARRELL D,et al.The Gene Ontology Annotation (GOA) Database:sharing knowledge in Uniprot with Gene Ontology[J].Nucleic Acids Research,2004,32(Database issue):D262.

    23. [23]

      CAMON E,MAGRANE M,BARRELL D,et al.The Gene Ontology Annotation (GOA) Project:Implementation of GO in SWISS-PROT,TrEMBL,and InterPro[J].Genome Research,2003,13(4):662.

    1. [1]

      尹思睿冯娇杨晓宇李良 . 植物蛋白复配对植物肉品质的影响. 轻工学报, 2024, 39(5): 18-28. doi: 10.12187/2024.05.003

    2. [2]

      赵悦闫清泉李玲玉司阔林宗学醒 . 钙螯合盐对牛奶-豌豆双蛋白再制干酪品质的影响. 轻工学报, 2024, 39(5): 1-8. doi: 10.12187/2024.05.001

    3. [3]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 0(0): -.

    4. [4]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 39(5): 9-17. doi: 10.12187/2024.05.002

    5. [5]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

  • 加载中
计量
  • PDF下载量:  44
  • 文章访问数:  913
  • 引证文献数: 0
文章相关
  • 收稿日期:  2016-03-20
  • 刊出日期:  2016-07-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
王晓, 李辉, 翟云清. 基于集成学习和基因本体标注库的细胞凋亡蛋白亚细胞位置预测[J]. 轻工学报, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014
引用本文: 王晓, 李辉, 翟云清. 基于集成学习和基因本体标注库的细胞凋亡蛋白亚细胞位置预测[J]. 轻工学报, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014
WANG Xiao, LI Hui and ZHAI Yun-qing. Predicting subcellular localization of apoptosis protein based on ensemble learning and Gene Ontology annotation database[J]. Journal of Light Industry, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014
Citation: WANG Xiao, LI Hui and ZHAI Yun-qing. Predicting subcellular localization of apoptosis protein based on ensemble learning and Gene Ontology annotation database[J]. Journal of Light Industry, 2016, 31(4): 95-101. doi: 10.3969/j.issn.2096-1553.2016.4.014

基于集成学习和基因本体标注库的细胞凋亡蛋白亚细胞位置预测

  • 郑州轻工业学院 计算机与通信工程学院, 河南 郑州 450001
基金项目:  国家自然科学基金项目(61402422);河南省教育厅科学技术研究重点项目(14A520063);郑州轻工业学院博士科研基金资助项目(2013BSJJ082)

摘要: 针对目前凋亡蛋白的亚细胞定位预测精度不高的问题,提出了基于集成学习和基因本体(GO)标注库的细胞凋亡蛋白亚细胞位置预测方法.该方法采用凋亡蛋白及其同源蛋白的GO特征,结合两层集成策略,预测凋亡蛋白的亚细胞位置.在第一层,依据不同同源蛋白个数生成多个特征向量集合,选取距离权重K近邻分类器作为个体分类器,训练多个子预测模型,并以多数投票的方式集成.在第二层,将第一层的集成模型作为子预测模型,以多数投票的方式集成不同近邻个数预测模型.Jackknife检验结果表明:该方法在CL317凋亡蛋白数据集上预测准确率达到96.2%,优于其他方法;此外,还有效降低了数据不均衡带来的影响.

English Abstract

参考文献 (23) 相关文章 (5)

目录

/

返回文章